Skip to main content
Log in

Rare Elements—Markers of the Formation Setting of Manganese and Iron Ore Deposits in the Kalahari and Postmasburg Fields (South Africa): Communication 1. Kalahari Manganese Field

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Manganese ores of the Lower Proterozoic Hotazel Formation (Transvaal Supergroup) associated with the banded Fe-silicites are marked by high concentrations of several rare elements (B, Ge, W, Mo, Cr, Ni, Zn, Cd, Pb, Ag, Bi, As, Sb, Te, Se). High boron contents in the oxide‒carbonate ores (Mn-lutites) are attributed to the chemosorptional concentration of this element on Mn-carbonates. Owing to hydrothermal transformations, a wide range of the ore-forming (mainly Fe and Mn) and rare elements (REE included) was removed from the underlying hyaloclastic basaltic andesites of the Ongeluk Formation. Manganese ores and Fe-silicites are characterized by the typical values of the cerium (Ce/Ce* 0.28–1.72) and europium (Eu/Eu* 0.57–16.31) anomalies that can suggest that primary sediments were deposited in a marginal shallow-marine basin with a prominent oxic surficial water layer and subanoxic conditions near the floor. At different stages of lithogenesis, metalliferous (Mn, Fe) sediments of the shallow-water basin were enriched in Eu (positive Eu/Eu*) and subjected to metasomatism (with the redistribution of Mn and the formation of manganese carbonates) and the consequent regional metamorphism (up to the stage of green sericite schists).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Arvestål, E.H.M., Changes in arsenic levels in the Precambrian oceans in relation to the upcome of free oxygen, in Examensarbete Inst. Geovetensk. Paleobiol., Uppsala Univ., Dept. Earth Sci., 2013. http://www.diva-portal.org/smash/ get/diva2:662871/FULLTEXT01.pdf

  2. Bau, M. and Dulski, P., Comparing yttrium and rare earth in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behavior during near vent mixing and for the Y/Ho ratio of Proterozoic seawater, Chem. Geol., 1999, vol. 155, pp. 77–90.

    Article  Google Scholar 

  3. Bau, M., Romer, R.L., Lüders, V., et al., Pb, O and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): Implications for the composition of Paleoproterozoic seawater and dating the increase of oxygen in the Precambrian atmosphere, Earth Planet. Sci. Lett., 1999, vol. 174, pp. 43–57.

    Article  Google Scholar 

  4. Bekker, A., Stack, J.F., Planavsky, N., et al., Iron Formation: The sedimentary product of complex interplay among mantle, tectonic, oceanic and biospheric processes, Econ. Geol., 2010, vol. 105, no. 3, pp. 467–508.

    Article  Google Scholar 

  5. Bergman, I.A. and Kolesov, G.M., Arsenic, antimony, and bismuth as indicators of the genesis of ore material in Early Precambrian ferrous quartzite formations, Geochem. Int., 2012, vol. 50, no. 10, pp. 816–831.

    Article  Google Scholar 

  6. Beukes, N.J., Palaeoenvironmental setting of iron-formations in the depositional basins of the Transvaal Supergroup, South Africa, in Iron-Formations:Fact and Problems, Trendell, A.F. an d Morris, R.C., Eds., Amsterdam: Elsevier, 1983, pp. 131–209.

  7. Beukes, N.J. and Gutzmer, J., Precambrian manganese deposits: geological setting, metallogenesis and palaeoenvironmental implications, in Manganese in the twenty-first century. Short Course. Abstract Volume, Polgari, M., Ed., Hungary: Veszprém, 2009, pp. 7–18.

  8. Beukes, N.J. and Smit, C.A., New evidence for thrust faulting in Griqualand West, South Africa: implications for stratigraphy and age of red beds, Trans. Geol. Soc. S. Afr., 1987, vol. 90, no. 4, pp. 378–394.

    Google Scholar 

  9. Beukes, N.J., Gutzmer, J., and Kleyenstüber, A.S.E., The iron and manganese deposits of the Transvaal Supergroup in Griqualand West. Excursion guide. South Africa Workshop, in IGCP Project 318: Genesis and Correlation of Marine Polymetallic Oxides, Johannesburg: Rand Afrik. Univ., 1993.

  10. Beukes, N.J., Burger, A.M., and Gutzmer, J., Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels Mine, Kalahari manganese field, S. Afr. J. Geol, 1995, vol. 98, no. 4, pp. 430–451.

    Google Scholar 

  11. Boardman, L.G., Further geological data on the Postmasburg and Kuruman manganese ore deposit, Northern Cape province, in The Geology of some ore deposits of Southern Africa, Haughton, S.H., Ed., 1964, vol. 2, pp. 415–440.

    Google Scholar 

  12. Bolanz, R., Wierzbicka-Wieczore, M., Čaplovičová, M., et al., Structural incorporation of As5+ into hematite, Environ. Sci. Technol., 2013, vol. 47, no. 16, pp. 9140–9147.

    Article  Google Scholar 

  13. Breuer, C. and Pichler, T., Arsenic in marine hydrothermal fluids, Chem. Geol., 2013, vol. 348, pp. 2–14.

    Article  Google Scholar 

  14. Cairncross, B., Beukes, N.J., and Gutzmer, J., The manganese adventure, in The South African Manganese Fields, Johannesburg: Assoc. Ore Metal Coop. Ltd., 1997.

    Google Scholar 

  15. Cannon, W.F. and Force, E.R., Potential for high-grade shallow-marine manganese deposits in North America, in Unconventional Mineral Deposits, Sranks, W.C., Ed., N. Y.: Min. Engin., 1983, pp. 175–190.

    Google Scholar 

  16. Chailluo, G., Schӓfer, J., Anschutz, P., et al., The behavior of arsenic in muddy sediments of the Bay of Biscay (France), Geochim. Cosmochim. Acta, 2003, vol. 67, no. 16, pp. 2993–3003.

    Article  Google Scholar 

  17. Chetty, D. and Gutzmer, J., REE redistribution during hydrothermal alteration of ores of the Kalahari manganese deposit, Ore Geol. Rev., 2012, vol. 47, no. 1, pp. 126–135.

    Article  Google Scholar 

  18. Clauer, N., Stille, P., Bonnot-Courtois, C., and Moore, W.C., Nd-Sr isotopic and REE constraints on the genesis of hydrothermal manganese crust in the Galapagos, Nature, 1984, vol. 311, pp. 743–745.

    Article  Google Scholar 

  19. Cornell, D.H. and Schutte, S.S., A volcanic-exhalative origin for the world’s largest (Kalahari) manganese field, Miner. Deposita, 1995, vol. 30, no. 3, pp. 146–151.

    Article  Google Scholar 

  20. Cornell, D.H., Schutte, S.S., and Eglingtone, B.L., The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma Proterozoic sea, Precambrian Res., 1996, vol. 79, pp. 101–123.

    Article  Google Scholar 

  21. Croal, L.R., Johnson, C.M., Beard, B.L., and Newman, D.K., Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 6, pp. 1227–1242.

    Article  Google Scholar 

  22. Cronan, D.S., Basal metalliferous sediments from the Eastern Pacific, Geology, 1976, vol. 87, no. 6, pp. 928–934.

    Google Scholar 

  23. Dostal, J., Dupuy, C., and Dudoingnon, P., Distribution of boron, lithium and beryllium in ocean island basalts from French Polynesia: implications for B/Be and Li/Be ratios as tracers of the subducted components, Mineral. Mag., 1996, vol. 60, pp. 563–580.

    Article  Google Scholar 

  24. Douville, E., Bienvenu, P., Charlou, J.L., et al., Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 4, pp. 627–643.

    Article  Google Scholar 

  25. Douville, E., Charlou, J.L., Oelkers, E.H., et al., The rainbow vent fluids (36°14′ N MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol., 2002, vol. 184, pp. 37–48.

    Article  Google Scholar 

  26. Dubinin, A.V. and Volkov, I.I., Mechanism of REE accumulation on iron hydroxides in the ocean, Geokhimiya, 1989, no. 8, pp. 1089–1100.

  27. Dubinin, A.V., Formation of Fe–Mn nodules in the Guatemalan Basin: Rare-earth element evidence, Geochem. Int., 1996, no. 12, pp. 1090–1098.

  28. Dubinin, A.V. and Sval’nov, V.N., Geochemistry of rare earth elements in ferromanganese micro- and macronodules from the Pacific nonproductive zone, Lithol. Miner. Resour., 2000, no. 6, pp. 586–604.

  29. Dubinin, A.V. and Sval’nov, V.N., Geochemistry of the manganese ore process in the ocean: Evidence from rare earth elements, Lithol. Miner. Resour., 2003, no. 2, pp. 91–100.

  30. Dubinin, A.V., Geokhimiya redkozemel’nykh elementov v okeane (Geochemistry of Rare Earth Elements in the Ocean), Moscow: Nauka, 2006.

  31. Eglington, B.M. and Armstrong, R.A., The Kaapvaal Craton and adjacent orogens, Southern Africa: a geochronological database and overview of the geological development of the craton, S. Afr. J. Geol., 2004, vol. 107, pp. 13–32.

    Article  Google Scholar 

  32. Eriksson, P.G., Reczko, B.F.F., and Piper, D.P., An interpretation of boron content within a Paleoproterozoic volcano-sedimentary succession: Pretoria Group, Transvaal Supergroup, South Africa, Precambrian Res., 1996, vol. 78, pp. 273–287.

    Article  Google Scholar 

  33. Evans, D.A., Beukes, N.J., and Kirschvink, J.L., Low-latitude glaciation in the Palaeoproterozoic era, Nature, 1997, vol. 386, pp. 262–266.

    Article  Google Scholar 

  34. Force, E.R. and Cannon, W.F., Depositional model for shallow-marine manganese deposits around black shale basins, Econ. Geol., 1988, vol. 83, no. 1, pp. 93–117.

    Article  Google Scholar 

  35. Frakes, L.A. and Bolton, B.R., Origin of manganese giants: sea level change and anoxic-oxic history, Geology, 1984, vol. 12, no. 1, pp. 83–86.

    Article  Google Scholar 

  36. German, C.R., Hydrothermal processes, in Treatise of Geochemistry, Turrekian, K.K. and Holland, H.D., Eds., Oxford: Elsevier, 2006, ch. 6.10, pp. 181–222.

    Google Scholar 

  37. German, C.R., Klinkhammer, G.P., Edmond, J.M., et al., Hydrothermal scavenging of rare-earth elements in the ocean, Nature, 1990, vol. 345, pp. 516–518.

    Article  Google Scholar 

  38. Grobbelaar, W.S. and Beukes, N.J., The Bishop and Glosam manganese mines and Beeshoek iron ore mine of the Postmasburg area, in Mineral Deposits of Southern Africa, Anhaeusser, C.R. and Maske, S., Eds., Johannesburg: Geol. Soc. S. Afr., 1986, vol. 1, pp. 957–961.

    Google Scholar 

  39. Gutzmer, J. and Beukes, N.J., Fault controlled metasomatic alteration of Early Proterozoic sedimentary manganese ores in the Kalahari manganese field, South Africa, Econ. Geol., 1995, vol. 90, pp. 823–844.

    Article  Google Scholar 

  40. Gutzmer, J. and Beukes, N.J., Mineral paragenesis of the Kalahari manganese field, South Africa, Ore Geol. Rev., 1996, vol. 11, no. 3, pp. 405–428.

    Article  Google Scholar 

  41. Gutzmer, J. and Beukes, N.J., The giant Kalahari manganese field, South Africa, Manganese in the Twenty-First Century. Short Course. Abstract Volume, Polgari, M. Ed., Hungary: Veszprém, 2009, pp. 19–28.

  42. Gutzmer, J., Beukes, N.J., and Yeh, H.-W., Fault controlled metasomatic alteration of Early Proterozoic sedimentary manganese ores at Mamatwan Mine, Kalahari manganese field, South Africa, S. Afr. J. Geol., 1997, vol. 100, no. 1, pp. 53–71.

    Google Scholar 

  43. Haskin, M.A. and Haskin, L.A., Rare earths in European shales: a redetermination, Science, 1966, vol. 154, pp. 507–509.

    Google Scholar 

  44. Haskin, L.A., Wideman, T.R., Frey, F.A., et al., Rare earths in sediments, J. Geophys. Res., 1966, vol. 71, pp. 6091–6105.

    Article  Google Scholar 

  45. Hemming, N.G. and Hanson, G.N., Boron isotopic composition and concentration in modern marine carbonates, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 537–543.

    Article  Google Scholar 

  46. Hemming, N.G. and Hönisch, B., Boron isotopes in marine carbonate sediments and the pH of ocean, in Proxies in late Cenozoic Paleoceanography, Hillaire-Marcel, C. and Vernal, A., Eds., Amserdam: Elsevier, 2007, vol. 1, pp. 717–733.

    Google Scholar 

  47. Holland, H.D., The oceans: a possible source of iron in iron-formations, Econ. Geol., 1973, vol. 68, no. 7, pp. 1169–1172.

    Article  Google Scholar 

  48. Holland, H.D., Volcanic gases, black smokers and the great oxidation event, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 21, pp. 3811–3826.

    Article  Google Scholar 

  49. Hu, Q.H., Sun, G.X., Gao, X.B., et al., Conversion, sorption and transport of arsenic species in geological media, Appl. Geochem., 2012, vol. 27, no. 11, pp. 2197–2203.

    Article  Google Scholar 

  50. Huang, K.-F., You, C.-F., Shen, M.-L., et al., Geochemistry of major constituents, boron and boron isotopes in pore waters from ODP Site 1202, Okinawa Trough, Terr. Atmos. Ocean Sci., 2005, vol. 16, no. 1, pp. 75–93.

    Article  Google Scholar 

  51. Ishikawa, T. and Nakamura, E., Boron isotope systematic in marine sediments, Earth Planet. Sci. Lett., 1993, vol. 117, no. 3/4, pp. 567–580.

    Article  Google Scholar 

  52. James, R.H. and Palmer, M.R., Marine geochemical cycles of the alkali elements and boron: the role of sediments, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 18, pp. 3111–3122.

    Article  Google Scholar 

  53. James, R.H., Elderfield, H., and Palmer, M.R., The chemistry of hydrothermal fluids from the Broken Spur site, 29° N Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 4, pp. 651–659.

    Article  Google Scholar 

  54. Jennings, M., The Middelplaats manganese ore deposit, Griqualand West, in Mineral Deposits of Southern Africa, Anhaeusser, C.R. and Maske, S., Eds., Johannesburg: Geol. Soc. S. Afr., 1986, vol. 1, pp. 979–983 .

    Google Scholar 

  55. Kirschvink, J.L., Gaidos, E.J., Bertan, L.E., et al., Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1400–1405.

    Article  Google Scholar 

  56. Kleyenstüber, A.S.E., The mineralogy of the manganese-bearing Hotazel Formation of the Proterozoic Transvaal sequence in Griqualand West, South Africa, Trans. Geol. Soc. S. Afr., 1984, vol. 87, pp. 257–272.

    Google Scholar 

  57. Kuleshov, V.N., A superlarge deposit—Kalahari manganese ore field (Northern Cape, South Africa): Geochemistry of isotopes (δ13C and δ18O) and Genesis, Lithol. Miner. Resour., 2012, no. 3, pp. 217–233.

  58. Kuleshov, V.N., Margantsevye porody i rudy: geokhimiya izotopov, genezis, evolyutsiya rudogeneza (Manganese Rocks and Ores: Isotope Geochemistry, Genesis, and Evolution of Ore Genesis), Moscow: Nauchn. Mir, 2013.

  59. Li, Y.-H. and Schoonmaker, J.E., Chemical composition and mineralogy of marine sediments, in Sediments, Diagenesis and Sedimentary Rocks, Mackenzie, F.T., Ed., Oxford: Elsevier, 2005, pp. 1–36.

    Google Scholar 

  60. Lièvremont, D., Bertin, Ph.N., and Lett, M.-C., Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes, Biochimie, 2009, vol. 91, no. 10, pp. 1220–1237.

    Article  Google Scholar 

  61. Mandal, B.K. and Suzuki, K.T., Arsenic round the World: A review, Talanta, 2002, vol. 58, pp. 201–235.

    Article  Google Scholar 

  62. Michard, A. and Albarede, F., The REE content of some hydrothermal fluids, Chem. Geol., 1986, vol. 55, pp. 51–60.

    Article  Google Scholar 

  63. Mills, R.A. and Elderfield, H., Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26o N Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 17, pp. 3511–3524.

    Article  Google Scholar 

  64. Miyano, T. and Beukes, N.J., Physicochemical environments of the formation of quartz-free manganese oxide ores from the Early Proterozoic Hotazel Formation, Kalahari manganese field, South Africa, Econ. Geol., 1987, vol. 82, pp. 706–718.

    Article  Google Scholar 

  65. Morford, J.L. and Emerson, S., The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 11/12, pp. 1735–1750.

    Article  Google Scholar 

  66. Nel, C.J., Beukes, N.J., and Villiers, J.P.R., The Mamatwan manganese mine of the Kalahari manganese field, in Mineral deposits of Southern Africa, Anhaeusser, C.R. and Maske, S., Eds., Johannesburg: Geol. Soc. S. Afr., 1986, vol. 1, pp. 963–978.

    Google Scholar 

  67. Polteau, S., Moore, J.M., and Tsikos, H., The geology and geochemistry of the Palaeoproterozoic Makganyene diamictite, Precambrian Res., 2006, vol. 148, no. 3/4, pp. 257–274.

    Article  Google Scholar 

  68. Rudnick, P.L. and Gao, S., Composition of the continental crust, in Treatise on Geochemistry, Rudnick, R.L., Ed., Amsterdam: Elsevier, 2003, vol. 3, pp. 1–64.

    Google Scholar 

  69. Samburskii, G.A., Analysis of technical-economic problems in the scavenging of boron from the natural water, Vestn. MITKhT, 2011, vol. 6, no. 4, pp. 118–125.

    Google Scholar 

  70. Schwarcz, Y.R., Abyei, E.K., and McMullen, C.C., Boron isotopic fractionation during day adsorption from sea-water, Earth Planet. Sci. Lett., 1969, vol. 6, pp. 1–5.

    Article  Google Scholar 

  71. Spivack, A.J. and Edmond, J.M., Boron isotope exchange between seawater and oceanic crust, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 5, pp. 1033–1043.

    Article  Google Scholar 

  72. Spivack, A.J., Palmer, M.R., and Edmond, J.M., The sedimentary cycle of the boron isotopes, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 7, pp. 1939–1949.

    Article  Google Scholar 

  73. Stolz, J.F., Basu, P., and Oremland, R.S., Microbial arsenic metabolism: New twists and an old poison, Microbe, 2010, vol. 5, pp. 53–59.

    Google Scholar 

  74. Tsikos, H. and Beukes, N.J.C., Deposition, diagenesis, and secondary enrichment of metals in the Paleoproterozoic Hotzel iron formation, Kalahary Manganese Field, South Africa, Econ. Geol., 2003, vol. 98, no. 7, pp. 1449–1462.

    Google Scholar 

  75. Tsikos, H. and Moore, J.M., Petrography and geochemistry of the Paleoproterozoic Hotazel iron-formation, Kalahari Manganese Field, South Africa: implication for Precambrian manganese metallogenesis, Econ. Geol., 1997, vol. 92, no. 1, pp. 87–97.

    Article  Google Scholar 

  76. USGS Mineral Commodity, Surveys, Mineral Commodity Summaries, 2009. http: minerals.usgs.gov/minerals/pubs/mcs/2009/mcs2009.pdf

  77. Varentsov, I.M., Manganese Ores of Supergene Zone: Geochemistry of Formation, Dordrecht: Kluwer Acad. Publ., 1996.

    Book  Google Scholar 

  78. Varentsov, I.M., Silaev, V.I., Simakova, Yu.S., and Filippov, V.N., New data on mineralogy and geochemistry of Kalahari manganese ore giants (South Africa): Issue of the genesis of manganese ores, in Mineralogicheskie perspektivy (Mineralogical Perspectives), Syktyvkar: Geoprint, 2011, pp. 194–197.

  79. Varentsov, I.M., Manganese giants: Kalahari deposits (South Africa): Implication for evolution of the manganese ore formation, in Mineralogicheskie perspektivy (Mineralogical Perspectives), Syktyvkar: Geoprint, 2011, pp. 190–193.

  80. Veizer, J., Secular variations in the composition of sedimentary carbonate rocks. II. Fe, Mn, Ca, Mg, Si and minor constituents, Precambrian Res., 1978, vol. 6, pp. 381–413.

    Article  Google Scholar 

  81. Vidyakin, M.N., Lazareva, Yu.N., and Reisewits, R., Membrane technology for removing boron from natural waters, Vodooch. Vodopodgot. Vodosnabzh, 2010, no. 12, pp. 60–69.

  82. Von Damm, K.L., Edmond, J.M., Measures, C.I., and Grant, B., Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California, Geochim. Cosmochim. Acta, 1985a, vol. 49, no. 11, pp. 2121–2137.

    Google Scholar 

  83. Von Damm, K.L., Edmond, J.M., Grant, B., et al., Chemistry of submarine hydrothermal solutions at 21º N East Pacific Rise, Geochim. Cosmochim. Acta, 1985b, vol. 49, no. 11, pp. 2197–2220.

    Article  Google Scholar 

  84. You, C.-F., Spivack, A.J., Smith, J.H., and Gieskes, J.M., Mobilization of boron in convergent margins: Implications from the boron geochemical cycle, Geology, 1993, vol. 21, no. 3, pp. 207–210.

    Article  Google Scholar 

  85. You, C.F., Chan, L.H., Spivack, A.J., and Gieskes, J.M., Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: implications for fluid expulsion in accretionary prism, Geology, 1995, vol. 23, no. 1, pp. 37–40.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.I. Silaev, DSc (Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar) and his colleagues for the invaluable help and active assistance in the organization of analytical determinations of the chemical composition of samples. We are also grateful to Profs. N.J. Beukes and J. Gutzmer (Department of Geology, Rand Afrikaans University, Johannesburg, South Africa) and Dr. A.S.E Kleyenstüber (Council for Mineral Technology, South Africa) for the help during field works and the discussion of issues of regional geology and ore formation.

Funding

This work was accomplished in accordance with the Research Program of the Geological Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kuleshov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varentsov, I.M., Kuleshov, V.N. Rare Elements—Markers of the Formation Setting of Manganese and Iron Ore Deposits in the Kalahari and Postmasburg Fields (South Africa): Communication 1. Kalahari Manganese Field. Lithol Miner Resour 54, 333–349 (2019). https://doi.org/10.1134/S0024490219040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490219040060

Navigation