Skip to main content
Log in

Boolean Subalgebras of Orthoalgebras

  • Published:
Order Aims and scope Submit manuscript

Abstract

We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathematics, vol. 78. Springer, Berlin (1981)

    MATH  Google Scholar 

  2. Czelakowski, J.: Partial Boolean algebras in a broader sense. Stud. Logica. 38, 1–16 (1979)

    Article  MathSciNet  Google Scholar 

  3. Döring, A., Harding, J.: Abelian subalgebras and the Jordan structure of a von Neumann algebra. Houston J. Math. 42(2), 559–568 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Faure, C., Frölicher, A.: Modern projective geometry mathematics and its applications, vol. 521. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  5. Firby, P.A.: Lattices and compactifications I, II, III. Proc. London Math. Soc. 3, 22–68 (1973)

    Article  MathSciNet  Google Scholar 

  6. Greechie, R.J.: On the structure of orthomodular lattices satisfying the chain condition. J. Combinatorial Theory 4, 210–218 (1968)

    Article  MathSciNet  Google Scholar 

  7. Foulis, D.J., Greechie, R.J., Rüttimann, G.T.: Filters and supports in orthoalgebras. Internat J. Theoret. Phys. 31(5), 789–807 (1992)

    Article  MathSciNet  Google Scholar 

  8. Grätzer, G., Koh, K.M., Makkai, M.: On the lattice of subalgebras of a Boolean algebra. Proc. Amer. Math. Soc. 36, 87–92 (1972)

    Article  MathSciNet  Google Scholar 

  9. Hamhalter, J.: Isomorphisms of ordered structures of abelian C -subalgebras of C -algebras. J. Math. Anal. Appl. 383(2), 391–399 (2011)

    Article  MathSciNet  Google Scholar 

  10. Hamhalter, J.: Dye’s Theorem and Gleason’s Theorem for AW*-algebras. J. Math. Anal Appl. 422(2), 1103–1115 (2015)

    Article  MathSciNet  Google Scholar 

  11. Harding, J., Navara, M.: Subalgebras of orthomodular lattices. Order 28(3), 549–563 (2011)

    Article  MathSciNet  Google Scholar 

  12. Heunen, C.: Piecewise Boolean algebras and their domains, Automata, languages, and programming. Part II, 208-219, Lecture Notes in Comput Sci., vol. 8573. Springer, Heidelberg (2014)

    Google Scholar 

  13. Heunen, C., Reyes, M.L.: Active lattices determine AW*-algebras. J. Math. Anal. Appl. 416, 289–313 (2014)

    Article  MathSciNet  Google Scholar 

  14. Isham, C.J., Butterfield, J.: Topos perspective on the Kochen-Specker theorem. I. Quantum states as generalized valuations. Internat. J. Theoret. Phys. 37(11), 2669–2733 (1998)

    Article  MathSciNet  Google Scholar 

  15. Kalmbach, G.: Orthomodular lattices. London Mathematical Society Monographs, vol. 18. Academic Press, London (1983)

    Google Scholar 

  16. Kochen, S., Specker, E.P. In: Addison, J.W., Henkin, L., Tarski, A. (eds.) : Logical structures arising in quantum theory, The theory of models. North-Holland, Amsterdam (1965)

  17. Lindenhovius, B.: \(\mathcal {C}(A)\), Radboud University Nijmegen. PhD thesis http://hdl.handle.net/2066/158429 (2016)

  18. Navara, M.: Constructions of quantum structures. In: Gabbay, D., Lehmann, D., Engesser, K. (eds.) Handbook of Quantum Logic, vol. 1, Elsevier, pp 335–366 (2007)

  19. Navara, M.: Orthoalgebras as pastings of Boolean algebras. Internat. J. Theoret. Phys. 56, 4126–4132 (2017). https://doi.org/10.1007/s10773-017-3479-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Sachs, D.: The lattice of subalgebras of a Boolean algebra. Canad. J. Math. 14, 451–460 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

C.H. is supported by EPSRC Fellowship EP/L002388/1. B.L. is supported by the AFOSR under the MURI grant number FA9550-16-1-0082 entitled, “Semantics, Formal Reasoning, and Tool Support for Quantum Programming”. M.N. was supported by the Ministry of Education of the Czech Republic under Project RVO13000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harding.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harding, J., Heunen, C., Lindenhovius, B. et al. Boolean Subalgebras of Orthoalgebras. Order 36, 563–609 (2019). https://doi.org/10.1007/s11083-019-09483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-019-09483-6

Keywords

Navigation