Skip to main content
Log in

Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Non-planar-ring epoxies together with non-planar-ring hardeners could achieve thermosets combining ultra-high shape recovery speed and excellent thermal properties. High shape recovery speed reflected high efficiency, and could decrease the energy consumption and the harmful effect of external stimuli on the materials, while it often conflicts with the thermal properties of shape memory polymers. In this paper, for the first time, epoxy resins with the super-short shape recovery time within 3 s were developed from non-planar-ring epoxies and hardeners, and their glass transition temperature (Tg) were ~127 °C much higher than their benzene ring analogues. The effects of non-planar-ring structures of the epoxies and hardeners on the curing behavior, thermal properties as well as the shape memory properties of the thermosets were systematically investigated; the structure-property relationships were disclosed with the help of computational simulation of structure parameters and ESP maps. The faster shape recovery speed of the non-planar-ring epoxy thermosets is from their higher molecular mobility contributed by the conformational transition of non-planar-rings as well as their higher recovery force compared with benzene ring analogs. Their higher Tgs are from the steric hindrance by the larger molecular volume of the non-planar-rings than benzene ring. This work will provide an effective method to produce shape memory polymers with excellent shape memory effects and high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, Prog. Polym. Sci., 49–50, 3 (2015).

    Article  CAS  Google Scholar 

  2. J. Hu, Y. Zhu, H. Huang, and J. Lu, Prog. Polym. Sci., 37, 1720 (2012).

    Article  CAS  Google Scholar 

  3. Q. Zhao, H. J. Qi, and T. Xie, Prog. Polym. Sci., 49-50, 79 (2015).

    Article  CAS  Google Scholar 

  4. C. Liu, H. Qin, and P. T. Mather, J. Mater. Chem., 17, 1543 (2007).

    Article  CAS  Google Scholar 

  5. L. Yang, G. Zhang, N. Zheng, Q. Zhao, and T. Xie, Angew. Chem. Int. Ed., 56, 12599 (2017).

    Article  CAS  Google Scholar 

  6. W. Wang, D. Shen, X. Li, Y. Yao, J. Lin, A. Wang, J. Yu, Z. L. Wang, S. W. Hong, Z. Lin, and S. Lin, Angew. Chem. Int. Ed. Engl., 57, 2139 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. X. J. Han, Z. Q. Dong, M. M. Fan, Y. Liu, J. H. Li, Y. F. Wang, Q. J. Yuan, B. J. Li, and S. Zhang, Macromol. Rapid Commun., 33, 1055 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. J. Deng, Z. Chang, T. Zhao, X. Ding, J. Sun, and J. Z. Liu, J. Am. Chem. Soc., 138, 4772 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. P. Lázpita, M. Sasmaz, J. M. Barandiarán, and V. A. Chernenko, Acta Mater., 155, 95 (2018).

    Article  CAS  Google Scholar 

  10. Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang, H. Li, M. Zhu, T. F. Hung, J. Liu, and Z. Shi, J. Mater. Chem. A, 6, 8549 (2018).

    Article  CAS  Google Scholar 

  11. C. Li, J. Adamcik, and R. Mezzenga, Nat. Nanotechnol., 7, 421 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. J. Leng, X. Lan, Y. Liu, and S. Du, Prog. Mater Sci., 56, 1077 (2011).

    Article  CAS  Google Scholar 

  13. M. Behl, M. Y. Razzaq, and A. Lendlein, Adv. Mater., 22, 3388 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. K. S. Santhosh Kumar, R. Biju, and C. P. Reghunadhan Nair, React. Funct. Polym., 73, 421 (2013).

    Article  CAS  Google Scholar 

  15. N. Zheng, G. Fang, Z. Cao, Q. Zhao, and T. Xie, Polym. Chem., 6, 3046 (2015).

    Article  CAS  Google Scholar 

  16. L. P. Chen, A. F. Yee, J. M. Goetz, and J. Schaefer, Macromolecules, 31, 5371 (1998).

    Article  CAS  Google Scholar 

  17. A. B. Leonardi, L. A. Fasce, I. A. Zucchi, C. E. Hoppe, E. R. Soulé, C. J. Pérez, and R. J. J. Williams, Eur. Polym. J., 47, 362 (2011).

    Article  CAS  Google Scholar 

  18. M. Fan, J. Liu, X. Li, J. Zhang, and J. Cheng, J. Polym. Res., 21, 376 (2014).

    Article  CAS  Google Scholar 

  19. T. Xie and I. A. Rousseau, Polymer, 50, 1852 (2009).

    Article  CAS  Google Scholar 

  20. Y. Liu, H. Sun, H. Tan, and X. Du, J. Appl. Polym. Sci., 127, 3152 (2013).

    Article  CAS  Google Scholar 

  21. K. Wei, G. Zhu, Y. Tang, and L. Niu, J. Polym. Res., 20, 123 (2013).

    Article  CAS  Google Scholar 

  22. Z. Ma, Y. Wang, J. Zhu, J. Yu, and Z. Hu, J. Polym. Sci., Part A: Polym. Chem., 55, 1790 (2017).

    Article  CAS  Google Scholar 

  23. C. Li, J. Dai, X. Liu, Y. Jiang, S. Ma, and J. Zhu, Macromol. Chem. Phys., 217, 1439 (2016).

    Article  CAS  Google Scholar 

  24. S. Rimdusit, M. Lohwerathama, K. Hemvichian, P. Kasemsiri, and I. Dueramae, Smart Mater. Struct., 22, 075033 (2013).

    Article  CAS  Google Scholar 

  25. T. Li, X. Liu, Y. Jiang, S. Ma, and J. Zhu, Iran. Polym. J., 25, 957 (2016).

    Article  CAS  Google Scholar 

  26. L. P. Chen, A. F. Yee, and E. J. Moskala, Macromolecules, 32, 5944 (1999).

    Article  CAS  Google Scholar 

  27. J. W. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).

    Article  CAS  Google Scholar 

  28. X. Li and A. F. Yee, Macromolecules, 37, 7231 (2004).

    Article  CAS  Google Scholar 

  29. S. Ma, D. C. Webster, and F. Jabeen, Macromolecules, 49, 3780 (2016).

    Article  CAS  Google Scholar 

  30. J. Karger-Kocsis, O. Gryshchuk, and N. Jost, J. Appl. Polym. Sci., 88, 2124 (2003).

    Article  CAS  Google Scholar 

  31. L. Zhang, M. Huang, R. Yu, J. Huang, X. Dong, R. Zhang, and J. Zhu, J. Mater. Chem. A, 2, 11490 (2014).

    Article  CAS  Google Scholar 

  32. J. Cheng, P. Zhang, T. Liu, and J. Zhang, Polymer, 78, 212 (2015).

    Article  CAS  Google Scholar 

  33. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett., 393, 51 (2004).

    Article  CAS  Google Scholar 

  34. N. Latelli, N. Ouddai, M. Arotçaréna, P. Chaumont, P. Mignon, and H. Chermette, Comput. Theor. Chem., 1027, 39 (2014).

    Article  CAS  Google Scholar 

  35. D. F. Parsons and B. W. Ninham, J. Phys. Chem. A, 113, 1141 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 36, 255 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. H. L. van de Wouw, E. C. Awuyah, J. I. Baris, and R. S. Klausen, Macromolecules, 51, 6359 (2018).

    Article  CAS  Google Scholar 

  38. P. Sjoberg and P. Politzer, J. Phys. Chem., 94, 3959 (1990).

    Article  CAS  Google Scholar 

  39. D. Pegu, J. Deb, S. K. Saha, M. K. Paul, and U. Sarkar, J. Mol. Struct., 1160, 167 (2018).

    Article  CAS  Google Scholar 

  40. Y.-D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, and X.-K. Jiang, J. Org. Chem., 61, 746 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. M. Szwarc, J. Chem. Phys., 16, 128 (1948).

    Article  CAS  Google Scholar 

  42. D. Roşu, C. Caşcaval, F. Mustatǎ, and C. Ciobanu, Thermochim. Acta, 383, 119 (2002).

    Article  Google Scholar 

  43. D. B. Guan, Z. Y. Cai, X. J. Zhai, W. G. Yao, S. J. Wang, H. An, and X. M. Qiu, Adv. Mater. Res., 652-654, 121 (2013).

    Article  CAS  Google Scholar 

  44. A. Patel, A. Maiorana, L. Yue, R. A. Gross, and I. Manas-Zloczower, Macromolecules, 49, 5315 (2016).

    Article  CAS  Google Scholar 

  45. X. Shen, X. Liu, J. Dai, Y. Liu, Y. Zhang, and J. Zhu, Ind. Eng. Chem. Res., 56, 10929 (2017).

    Article  CAS  Google Scholar 

  46. S. Ma and D. C. Webster, Macromolecules, 48, 7127 (2015).

    Article  CAS  Google Scholar 

  47. S. Wang, S. Ma, C. Xu, Y. Liu, J. Dai, Z. Wang, X. Liu, J. Chen, X. Shen, J. Wei, and J. Zhu, Macromolecules, 50, 1892 (2017).

    Article  CAS  Google Scholar 

  48. P. Li, S. Ma, J. Dai, X. Liu, Y. Jiang, S. Wang, J. Wei, J. Chen, and J. Zhu, ACS Sustain. Chem. Eng., 5, 1228 (2017).

    Article  CAS  Google Scholar 

  49. W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013).

    Article  CAS  Google Scholar 

  50. X. Xiong, L. Zhou, R. Ren, X. Ma, and P. Chen, Polymer, 140, 326 (2018).

    Article  CAS  Google Scholar 

  51. Y.-C. Chiu, I. C. Chou, W.-C. Tseng, and C.-C. M. Ma, Polym. Degrad. Stab., 93, 668 (2008).

    Article  CAS  Google Scholar 

  52. S. Ma, X. Liu, L. Fan, Y. Jiang, L. Cao, Z. Tang, and J. Zhu, ChemSusChem, 7, 555 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. S. Ma, W. Liu, C. Hu, Z. Wang, and C. Tang, Macromol. Res., 18, 392 (2010).

    Article  CAS  Google Scholar 

  54. W. Liu, S. Ma, Z. Wang, C. Hu, and C. Tang, Macromol. Res., 18, 853 (2010).

    Article  CAS  Google Scholar 

  55. Y. Liu, C. Han, H. Tan, and X. Du, Mater. Sci. Eng. A, 527, 2510 (2010).

    Article  CAS  Google Scholar 

  56. K. Wei, B. Ma, Y. Liu, H. Wang, and N. Li, J. Mater. Res., 30, 2179 (2015).

    Article  CAS  Google Scholar 

  57. J. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).

    Article  CAS  Google Scholar 

  58. C. C. Hornat, Y. Yang, and M. W. Urban, Adv. Mater., 29, 1603334 (2017).

    Article  CAS  Google Scholar 

  59. P. J. Flory, Polymer, 20, 1317 (1985).

    Article  Google Scholar 

  60. G. Marrucci, Macromolecules, 14, 434 (1981).

    Article  CAS  Google Scholar 

  61. L. Zhang, S. S. Shams, Y. Wei, X. Liu, S. Ma, R. Zhang, and J. Zhu, J. Mater. Chem. A, 2, 20010 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songqi Ma.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: The authors are grateful for the financial support from National Natural Science Foundation of China (Nos. 51473180 and 51773216), Youth Innovation Promotion Association, CAS (No. 2018335), and National Key Research and Development Program of China (No. 2017YFE0102300).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ma, S., Wei, J. et al. Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance. Macromol. Res. 28, 480–493 (2020). https://doi.org/10.1007/s13233-020-8064-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8064-6

Keywords

Navigation