Skip to main content
Log in

Pairwise Fusion Approach Incorporating Prior Constraint Information

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we explore sparsity and homogeneity of regression coefficients incorporating prior constraint information. The sparsity means that a small fraction of regression coefficients is nonzero, and the homogeneity means that regression coefficients are grouped and have exactly the same value in each group. A general pairwise fusion approach is proposed to deal with the sparsity and homogeneity detection when combining prior convex constraints. We develop a modified alternating direction method of multipliers algorithm to obtain the estimators and demonstrate its convergence. The efficiency of both sparsity and homogeneity detection can be improved by combining the prior information. Our proposed method is further illustrated by simulation studies and analysis of an ozone dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  2. Breiman, L., Friedman, J.H.: Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc. 80(391), 580–598 (1985)

    Article  MathSciNet  Google Scholar 

  3. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  4. Fan, Y., Tang, C.Y.: Tuning parameter selection in high dimensional penalized likelihood. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75(3), 531–552 (2013)

    Article  MathSciNet  Google Scholar 

  5. Geyer, C.J.: On the asymptotics of convex stochastic optimization. Unpublished manuscript (1996)

  6. Ke, Z.T., Fan, J., Wu, Y.: Homogeneity pursuit. J. Am. Stat. Assoc. 110(509), 175–194 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ma, S., Huang, J.: A concave pairwise fusion approach to subgroup analysis. J. Am. Stat. Assoc. 112(517), 410–423 (2017)

    Article  MathSciNet  Google Scholar 

  8. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Order, Inequality, and Shape Constraints. Wiley, Hoboken (2011)

    Google Scholar 

  9. Stahlecker, P.: A priori Information und Minimax-Schätzung im linearen Regressionsmodell. Athenäum (1987)

  10. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Article  MathSciNet  Google Scholar 

  12. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  Google Scholar 

  13. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  14. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zhu, Y., Shen, X., Pan, W.: Simultaneous grouping pursuit and feature selection over an undirected graph. J. Am. Stat. Assoc. 108(502), 713–725 (2013)

    Article  MathSciNet  Google Scholar 

  16. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Li.

Appendix

Appendix

1.1 A. Proof of Proposition 2.1

By the definition \(\varvec{\eta }_1^{(m+1)}, \mathbf {\varvec{\eta }}_2^{(m+1)}\), for any \(\varvec{\eta }_1\), \(\mathbf {\varvec{\eta } }_2\), we have

$$\begin{aligned} S_n \biggl (\varvec{\beta }^{(m+1)}, \varvec{\eta }_1^{(m+1)}, \varvec{\eta }_2^{(m+1)}, {\mathbf {v}}^{(m)}_1, {\mathbf {v}}_2^{(m)}\biggr )\le S_n \biggl (\varvec{\beta }^{(m+1)},\varvec{\eta }_1, \varvec{\eta }_2, {\mathbf {v}}^{(m)}_1, {\mathbf {v}}_2^{(m)} \biggr ). \end{aligned}$$

Denote \(\Xi (\varvec{\beta }) = \{((\varvec{\eta }_1, \varvec{\eta }_2) : \varvec{\beta }^{(m+1)}- \varvec{\eta }_1 ={\mathbf {0}}, {\mathbf {L}}\varvec{\beta }^{(m+1)}- \varvec{\eta }_2 ={\mathbf {0}} \}\),

$$\begin{aligned} h^{(m+1)}= & {} \inf \limits _{\Xi (\varvec{\beta })} \biggl \{\frac{1}{2n}\biggl \Vert {\mathbf {y}}- {\mathbf {X}}\varvec{\beta }^{(m+1)}\biggr \Vert ^{2}+ {\mathbb {I}}_{{\mathcal {C}}}(\varvec{\eta }_1 ) + p_{\gamma }(|\varvec{\beta }^{(m+1)}|, \lambda _1 ) + p_{\gamma }(|\varvec{\eta }_2|,\lambda _2 ) \biggr \} \\= & {} \inf \limits _{\Xi (\varvec{\beta })}S_n( \varvec{\beta }^{(m+1)}, \varvec{\eta }_1, \varvec{\eta }_2, {\mathbf {v}}_1^{(m)},{\mathbf {v}}_2^{(m)} ). \end{aligned}$$

Then,

$$\begin{aligned} S_n \biggl (\varvec{\beta }^{(m+1)}, \varvec{\eta }_1^{(m+1)}, \varvec{\eta }^{(m+1)}_2, {\mathbf {v}}_1^{(m)}, {\mathbf {v}}_2^{(m)} \biggr )\le h^{(m+1)}. \end{aligned}$$

For any integer t, \({\mathbf {v}}_1^{(m+t-1)} = {\mathbf {v}}_1^{(m)} + \tau _1\sum _{i=1}^{t-1}(\varvec{\beta }_1^{(m+i)} - \varvec{\eta }_1^{(m+i)} ) \), and \({\mathbf {v}}^{(m+t-1)}_2={\mathbf {v}}^{(m)}_2+\tau _2 \sum \nolimits _{i=1}^{t-1}({\mathbf {L}}\varvec{\beta }^{(m+i)}- \varvec{\eta }^{(m+i)}_2)\), then we have

$$\begin{aligned}&S_n\biggl (\varvec{\beta }^{(m+t)}, \varvec{\eta }^{(m+t)}_1, \varvec{\eta }_2^{(m+t)}, {\mathbf {v}}^{(m+t-1)}_1,{\mathbf {v}}_2^{(m+t-1)} \biggr ) \\&\quad =\frac{1}{2n}\left\| {\varvec{y}}-{\mathbf {X}}\varvec{\beta }^{(m+t)}\right\| ^{2}+ p_{\gamma }(|\varvec{\beta }^{(m+1)}|, \lambda _1 ) + {\mathbb {I}}_{{\mathcal {C}}}(\varvec{\eta }_1^{(m+t)})\\&\qquad + {\mathbf {v}}_1^{(m+t-1)\mathrm {T}}(\varvec{\beta }^{(m+t)} -\varvec{\eta }_1^{(m+t)}) \\&\qquad +\, \frac{\tau _1}{2}\Vert \varvec{\beta }^{(m+t)} -\varvec{\eta }_1^{(m+t)} \Vert + {\mathbf {v}}^{(m+t-1)\mathrm {T}}_2({\mathbf {L}}\varvec{\beta }^{(m+t)} - \varvec{\eta }^{(m+t)}_2) \\&\qquad +\,\frac{\tau _2 }{2}||{\mathbf {L}}\varvec{\beta }^{(m+t)} - \varvec{\eta }^{(m+t)}_2||^{2} + p_{\gamma }(|\varvec{\eta }_2^{(m+t)}|,\lambda _2 ) \\&\quad =\frac{1}{2n}\left\| {\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{(m+t)}\right\| ^{2}+ p_{\gamma }(|\varvec{\beta }^{(m+1)}|, \lambda _1 ) + {\mathbb {I}}_{{\mathcal {C}}}(\varvec{\eta }_1^{(m+t)})\\&\qquad + {\mathbf {v}}_1^{(m)\mathrm {T}}(\varvec{\beta }^{(m+t)} -\varvec{\eta }_1^{(m+t)})\\&\qquad +\, \tau _1\sum _{i=1}^{t-1}(\varvec{\beta }^{(m+i)} -\varvec{\eta }_1^{(m+i)})^{\mathrm {T}}(\varvec{\beta }^{(m+t)} -\varvec{\eta }_1^{(m+t)}) + {\mathbf {v}}_2^{(m)\mathrm {T}}({\mathbf {L}}\varvec{\beta }^{(m+t)} -\varvec{\eta }_1^{(m+t)}) \\&\qquad +\, \tau _2\sum _{i=1}^{t-1}({\mathbf {L}}\varvec{\beta }^{(m+i)} -\varvec{\eta }_2^{(m+i)})^{\mathrm {T}}({\mathbf {L}}\varvec{\beta }^{(m+t)} -\varvec{\eta }_2^{(m+t)}) + p_{\gamma }(|\varvec{\eta }_2^{(m+t)}|,\lambda _2 ) \\&\quad \le h^{(m+t)}. \end{aligned}$$

By the differentiable of (\(S_n( \varvec{\beta },\varvec{\eta }_1,\varvec{\eta }_2, {\mathbf {v}}_1, {\mathbf {v}}_2 )\)) with respect to \(\varvec{\beta }\) and (\(S_n( \varvec{\beta },\varvec{\eta }_1,\varvec{\eta }_2, {\mathbf {v}}_1, {\mathbf {v}}_2 )\)) is convex with respect to \(\mathbf {\varvec{\eta }}_1, \varvec{\eta }_2\), based on Theorem 4.1 in [12], the limits of \((\varvec{\beta }^{(m)}, \varvec{\eta }_1^{(m)}, \varvec{\eta }_2^{(m)} )\) exist, which denote as \((\varvec{\beta }^{*}, \varvec{\eta }_1^{*}, \varvec{\eta }_2^{*} )\). Therefore,

$$\begin{aligned} h^{*}= & {} \lim _{m\rightarrow \infty }h^{(m+1)}=\lim _{m\rightarrow \infty }h^{(m+t)}\\= & {} \inf _{\Xi (\varvec{\beta }^{*})} \biggl \{\frac{1}{2n}\left\| {\varvec{y}}-{\mathbf {X}}\varvec{\beta }^{*}\right\| ^{2}+{\mathbb {I}}_{{\mathcal {C}}}(\varvec{\eta }_1 ) + p_{\gamma }(|\varvec{\beta }^{*}|, \lambda _1 ) + p_{\gamma }(|\varvec{\eta }_2|,\lambda _2 )\biggr \}, \end{aligned}$$

and for any \(t\ge 0\)

$$\begin{aligned}&\lim _{m\rightarrow \infty }S_n\biggl (\varvec{\beta }^{(m+t)}, \varvec{\eta }^{(m+t)}_1,\varvec{\eta }_2^{(m+t)}, {\mathbf {v}}^{(m+t-1)}_1,{\mathbf {v}}_2^{(m+t-1)} \biggr ) \\&\quad =\frac{1}{2n}\left\| {\varvec{y}}-{\mathbf {X}}\varvec{\beta }^{*}\right\| ^{2}+ {\mathbb {I}}_{{\mathcal {C}}}(\varvec{\eta }_1^{*} ) + p_{\gamma }(|\varvec{\beta }^{*}|, \lambda _1 ) + p_{\gamma }(|\varvec{\eta }_2^{*}|,\lambda ) \\&\qquad +\, \lim _{m\rightarrow \infty }{\mathbf {v}}_1^{(m)\mathrm {T}}(\varvec{\beta }^{*}- \varvec{\eta }_1^{*})+(t-\frac{1}{2}) \tau _1 \Vert \varvec{\beta }^{*}- \varvec{\eta }_1^{*}\Vert ^{2} \\&\qquad +\,\lim _{m\rightarrow \infty }{\mathbf {v}}_2^{(m)\mathrm {T}}({\mathbf {L}}\varvec{\beta }^{*} - \varvec{\eta }_2^{*})+(t-\frac{1}{2}) \tau _2 \Vert {\mathbf {L}}\varvec{\beta }^{*}-\varvec{\eta }_2^{*}\Vert ^{2} \\&\quad \le h^{*}. \end{aligned}$$

Hence, \(\lim _{m\rightarrow \infty }\Vert {\mathbf {r}}^{(m)}_1\Vert ^{2}=r_1^{*}= \Vert \varvec{\beta }^{*}- \varvec{\eta }_1^{*}\Vert ^2 = 0\) and \(\lim _{m\rightarrow \infty }\Vert {\mathbf {r}}^{(m)}_2\Vert ^{2}=r_2^{*}= \Vert {\mathbf {L}}\varvec{\beta }^{*}- \varvec{\eta }_2^{*}\Vert ^2 = 0\).

By definition that \(\varvec{\beta }^{(m+1)}\) is the minimizer of \(S_n\biggl (\varvec{\beta }, \varvec{\eta }^{(m)}_1,\varvec{\eta }_2^{(m)},{\mathbf {v}}_1^{(m)}, {\mathbf {v}}_2^{(m)} \biggr )\), then

$$\begin{aligned} \partial S_n\biggl (\varvec{\beta }^{(m+1)}, \varvec{\eta }^{(m)}_1,\varvec{\eta }_2^{(m)} {\mathbf {v}}_1^{(m)}, {\mathbf {v}}_2^{(m)}\biggr )/\partial \varvec{\beta }= {\mathbf {0}}, \end{aligned}$$

and further on,

$$\begin{aligned}&\partial S_n(\varvec{\beta }^{(m+1)},\varvec{\eta }^{(m)}_1,\varvec{\eta }_2^{(m)}, {\mathbf {v}}_1^{(m)}, {\mathbf {v}}_2^{(m)})/\partial \varvec{\beta }\\&\quad =-\,\frac{1}{n}{\mathbf {X}}^{\mathrm {T}}({\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{(m+1)})+ \sum _{j=1}^{p}p'(|\beta _j^{(m+1)}|)\text{ sgn }(\beta _j^{(m+1)})+{\mathbf {v}}_1^{(m+1)}\\&\qquad +\,\tau _1(\varvec{\beta }^{(m+1)} - \varvec{\eta }_1^{(m)} ) +{\mathbf {L}}^{\mathrm {T}} {\mathbf {v}}_2^{(m)}+ {\mathbf {L}}^{\mathrm {T}}\tau _2( {\mathbf {L}}\varvec{\beta }^{(m+1)} - \varvec{\eta }_2^{(m)} ) \\&\quad =-\,\frac{1}{n}{\mathbf {X}}^{\mathrm {T}}({\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{(m+1)})+ \sum _{j=1}^{p}p'(|\beta _j^{(m+1)}|)\text{ sgn }(\beta _j^{(m+1)})\\&\qquad +\, {\mathbf {v}}_1^{(m+1)} + \tau _1(\varvec{\eta }_1^{(m+1)} - \varvec{\eta }_1^{(m)}) \\&\qquad +\, {\mathbf {L}}^{\mathrm {T}}({\mathbf {v}}_2^{(m+1)} +\tau _2(\varvec{\eta }_2^{(m+1)} - \varvec{\eta }_2^{(m)}) ), \end{aligned}$$

where the last equality is based on \({\mathbf {v}}_1^{(m+1)} = {\mathbf {v}}_1^{(m)} + \tau _1(\varvec{\beta }^{(m+1)} - \varvec{\eta }_1^{(m+1)} ), {\mathbf {v}}_2^{(m+1)} = {\mathbf {v}}_2^{(m)} + \tau _2({\mathbf {L}}\varvec{\beta }^{(m+1)} - \varvec{\eta }_2^{(m+1)} )\). Therefore,

$$\begin{aligned}&{\mathbf {s}}_1^{(m+1)}+{\mathbf {s}}_2^{(m+1)} \\&\quad =\tau _1(\varvec{\eta }_1^{(m+1)} - \varvec{\eta }_1^{(m)})+ {\mathbf {L}}^{\mathrm {T}}\tau _2(\varvec{\eta }_2^{(m+1)} - \varvec{\eta }_2^{(m)}) \\&\quad =\frac{1}{n}{\mathbf {X}}^{\mathrm {T}}({\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{(m+1)})- \sum _{j=1}^{p}p'(|\beta _j^{(m+1)}|)\text{ sgn }(\beta _j^{(m+1)})- {\mathbf {v}}_1^{(m+1)}-{\mathbf {L}}^{\mathrm {T}}{\mathbf {v}}_2^{(m+1)}. \end{aligned}$$

Since \(\Vert \varvec{\beta }^{*} - \varvec{\eta }_1^{*} \Vert ^{2}= \Vert {\mathbf {L}}\varvec{\beta }^{*} - \varvec{\eta }_2^{*}\Vert ^2=0\),

$$\begin{aligned}&\lim _{m\rightarrow \infty }\partial S_n(\varvec{\beta }^{(m+1)}, \varvec{\eta }^{(m)}_1,\varvec{\eta }_2^{(m)}, {\mathbf {v}}_1^{(m)}, {\mathbf {v}}_2^{(m)})/\partial \varvec{\beta }\\&\quad =\lim _{m\rightarrow \infty }-\frac{1}{n}{\mathbf {X}}^{\mathrm {T}}({\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{(m+1)})+ \sum _{j=1}^{p}p'(|\beta _j^{(m+1)}|)\text{ sgn }(\beta _j^{(m+1)})\\&\qquad + {\mathbf {v}}_1^{(m+1)} + {\mathbf {L}}^{\mathrm {T}}{\mathbf {v}}_2^{(m+1)} \\&\quad =-\,\frac{1}{n}{\mathbf {X}}^{\mathrm {T}}({\varvec{y}}- {\mathbf {X}}\varvec{\beta }^{*})+ \sum _{j=1}^{p}p'(|\beta _j^{*}|)\text{ sgn }(\beta _j^{*})+ {\mathbf {v}}_1^{*} + {\mathbf {L}}^{\mathrm {T}}{\mathbf {v}}_2^{*}={\mathbf {0}}. \end{aligned}$$

Consequently, we have \(\lim _{m\rightarrow \infty }{\mathbf {s}}_1^{(m+1)}+{\mathbf {s}}_2^{(m+1)}={\mathbf {0}}\).

1.2 B. Proof of Theorem 2.2

This proof is an adaptation to a prior constraint case of the proof given by [11]. Denote \({\mathbf {u}}= (u_1,\ldots , u_p )^{\mathrm {T}}\), and

$$\begin{aligned} V_n({\mathbf {u}}) =&\sum _{i=1}^{n}\{ (\epsilon _i-{\mathbf {u}}^{\mathrm {T}}{\mathbf {X}}_i/\sqrt{n})^2 - \epsilon _i^2 \} + \lambda _{n1} \sum _{j=1}^{p}\{ |\beta _{j}+ u_j/\sqrt{n} | - |\beta _{j}| \} \\&+ \lambda _{n2} \sum _{j=1}^{p-1}\{ |\beta _{j+1} - \beta _{j} + (u_{j+1} - u_{j})/\sqrt{n} | - |\beta _{j+1} - \beta _{j} | \} \\&+ \sum _{k=1}^{r}v_k (f_k(\varvec{\beta }+ {\mathbf {u}}/\sqrt{n}) - f_k(\varvec{\beta })) \end{aligned}$$

and note that \(V_n\) is minimized at \(\sqrt{n}(\widehat{\varvec{\beta }}_n -\varvec{\beta })\). First note that, finite dimensional p, based on the CLT

$$\begin{aligned} \sum _{i=1}^{n}\{ (\epsilon _i-{\mathbf {u}}^{\mathrm {T}}{\mathbf {X}}_i/\sqrt{n})^2 - \epsilon _i^2 \} \rightarrow _{d} -2{\mathbf {u}}^{\mathrm {T}}W + {\mathbf {u}}^{\mathrm {T}}C{\mathbf {u}}. \end{aligned}$$

For \(L_1\) penalty,

$$\begin{aligned} \sum _{j=1}^{p}\{ |\beta _{j} + u_j/\sqrt{n} | - |\beta _{j}| \} \rightarrow \lambda _{01} \sum _{j=1}^{p}\{ u_j\text{ sgn }(\beta _j)&I(\beta _j \ne 0 )+ |u_j|I(\beta _j=0) \}, \\ \sum _{j=1}^{p-1}\{ |\beta _{j+1} - \beta _{j} + (u_{j+1} - u_{j})/\sqrt{n} | - |\beta _{j+1} - \beta _{j} | \}&\\ \rightarrow \lambda _{02} \sum _{j=1}^{p-1}\{ (u_{j+1} - u_{j})\text{ sgn }(\beta _{j+1} - \beta _{j})I(\beta _j \ne&\beta _{j+1} ) + |u_j - u_{j+1}|I(\beta _j=\beta _{j+1} ) \}, \end{aligned}$$

and

$$\begin{aligned} {\mathbf {v}}^{\mathrm {T}} ({\mathbf {f}}(\varvec{\beta }+ {\mathbf {u}}/\sqrt{n} ) - {\mathbf {f}}(\varvec{\beta }) ) \rightarrow {\mathbf {v}}_0^{\mathrm {T}} \frac{\partial {\mathbf {f}}(\varvec{\beta })}{\partial \varvec{\beta }}{\mathbf {u}}. \end{aligned}$$

Then, for finite dimensional p we have \(V_n({\mathbf {u}}) \rightarrow _{d} V({\mathbf {u}})\), where

$$\begin{aligned} V({\mathbf {u}})&= -\,2{\mathbf {u}}^{\mathrm {T}}{\mathbf {W}}+ {\mathbf {u}}^{\mathrm {T}}C{\mathbf {u}}+ \lambda _{01} \sum _{j=1}^{p}\{ u_j\text{ sgn }(\beta _j)I(\beta _j \ne 0 )+ |u_j|I(\beta _j=0) \} \\&\quad +\, \lambda _{02} \sum _{j=1}^{p-1}\{ (u_{j+1} - u_{j})\text{ sgn }(\beta _{j+1} - \beta _{j})I(\beta _j \ne \beta _{j+1} ) \\&\quad +\, |u_j - u_{j+1}|I(\beta _j=\beta _{j+1} ) \} + {\mathbf {v}}_0^{\mathrm {T}} \frac{\partial {\mathbf {f}}(\varvec{\beta })}{\partial \varvec{\beta }}{\mathbf {u}}. \end{aligned}$$

Since \(V_n({\mathbf {u}})\) is convex and \(V({\mathbf {u}})\) has a unique minimum, it follows [5] that

$$\begin{aligned} \arg \min _{{\mathbf {u}}} V_n({\mathbf {u}}) = \sqrt{n}(\widehat{\varvec{\beta }}_n - \varvec{\beta })\rightarrow _{d} \arg \min _{{\mathbf {u}}} V({\mathbf {u}}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jin, B. Pairwise Fusion Approach Incorporating Prior Constraint Information. Commun. Math. Stat. 8, 47–62 (2020). https://doi.org/10.1007/s40304-018-0168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-018-0168-3

Keywords

Mathematics Subject Classification

Navigation