Skip to main content
Log in

Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish existence and asymptotic behaviour of nontrivial weak solution of a class of quasilinear stationary Kirchhoff type equations involving the variable exponent spaces with critical growth, namely

$$\begin{aligned}{\left\{ \begin{array}{ll} -M (\mathcal{A}(u)) {\rm div} (a(|\nabla u|^{p(x)}) | \nabla u|^{p(x) - 2} \nabla u) = \lambda f (x, u) + |u|^{s(x)-2} u \quad {\rm in} \quad \Omega,\\ u = 0 \quad {\rm on} \quad \partial \Omega,\end{array}\right. } \end{aligned}$$

where \({\Omega}\) is a bounded smooth domain of \({\mathbb{R}^N}\) , with homogeneous Dirichlet boundary conditions on \({\partial \Omega}\) , the nonlinearities \({f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}}\) is a continuous function, \({a : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}}\) is a function of the class \({C^1}\) , \({M : \mathbb{R}^{+}_{0} \rightarrow \mathbb{R}^{+}}\) is a continuous function whose properties will be introduced later, and \({\lambda}\) is a positive parameter. We assume that \({\mathcal{C} = \{x \in \Omega : s(x) = \gamma^{*}(x)\} \neq \emptyset}\) , where \({\gamma (x)^{*} = N \gamma (x) / (N - \gamma (x))}\) is the critical Sobolev exponent. We show that the problem has at least one solution, which it converges to zero, in the norm of the space X as \({\lambda \rightarrow + \infty}\) . Our result extends, complement and complete in several ways some of the recent works. We want to emphasize that a difference of some previous research is that the conditions on \({a(\cdot)}\) are general enough to incorporate some differential operators of great interest. In particular, we can cover a general class of nonlocal operators for \({p(x) > 1}\) , for all \({x \in \bar{\Omega}}\) . The main tools used are the Mountain Pass Theorem without the Palais-Smale condition given in [11] and the Concentration Compactness Principle for variable exponent found in [9]. We remark that it will be necessary a suitable truncation argument in the Euler- Lagrange operator associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334, 817–822 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves C.O., Corrêa F.J.S.A., Figueiredo G.M.: On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2, 409–417 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Alves C.O., Corrêa F.J.S.A., Ma T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and apllications. J. Functional Analysis 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions of polyharmonic Kirchhoff systems. Math. Models Methods Appl. Sci. 22 (2012), 1150009, 36 pp.

  6. G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for higher order p-Kirchhoff problems. Commun. Contemp. Math. 16 (2014), 1450002, 43 pp.

  7. Azorero J.G., Alonso I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc. 323, 877–895 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bocea M., Mihăilescu M., Llanos M.P., Rossi J.D.: Models for growth of heterogeneous sandpiles Mosco convergence. Asymptot. Anal. 78, 11–36 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bonder J.F., Silva A.: Concentration-compactness principle for variable exponent spaces and applications. Electron. J. Diff. Equ. 141, 1–18 (2010)

    MathSciNet  MATH  Google Scholar 

  10. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. (New York: Springer, 2011).

  11. Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cammaroto F., Vilasi L.: A critical Kirchhoff-type problem involving the \({p\&q}\) -Laplacian. Math. Nachr. 287, 184–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. F. Chaves, G. Ercole and O. Miyagaki. Existence of a nontrivial solution for a \({(p, q)}\) -Laplacian equation with \({p}\) –critical exponent. Bound. Value Probl. (2014),2014:236.

  14. Chen Y., Levine S., Rao M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen S.J., Li L.: Multiple solutions for the nonhomogeneous Kirchhoff equation on \({\mathbb{R}^N}\) . Nonlinear Anal. RWA 14(3), 1477–1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chipot M., Rodrigues J.: On a class of non-local non-linear elliptic problems. RAIRO Modél. Math. Anal. Num. 26, 447–467 (1992)

    Article  MATH  Google Scholar 

  17. Colasuonno F., Pucci P.: Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Corrêa F.J.S.A., Figueiredo G.M.: On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 74, 263–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Corrêa F.J.S.A., Reis Costa C.A.: On a \({p(x)}\) –Kirchhoff equation with critical exponent and an additional nonlocal term. Funkcial. Ekvac. 58, 321–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Corrêa F.J.S.A., Reis Costa C.A.: On a \({p(x)}\) –Kirchhoff equation with critical exponent and an additional nonlocal term via truncation argument. Math. Nachr. 288, 1226–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Diening, P. Harjulehto, P. Hasto, and M. Růžička. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics (Heidelberg: Springer, 2011).

  22. Edmunds D.E., Ráskosník J.: Sobolev embeddings with variable exponent. Studia Math. 143, 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Fan X.L., Zhao D.: On the spaces \({L^{p(x)}}\) and \({W^{m, p(x)}}\) . J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan X., Han X.: Existence and multiplicity of solutions for p(x)-Laplacian equations in \({\mathbb{R}^N}\) . Nonlinear Anal. 59, 173–188 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Fan X., Zhang Q.: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fan X., Shen J.S., Zhao D.: Sobolev embedding theorems for spaces \({W^{k, p(x)}(\Omega)}\) . J. Math. Anal. Appl. 62, 749–760 (2001)

    Article  MATH  Google Scholar 

  27. Fan X., Shen J.S., Zhao D.: On the spaces \({L^{p(x)}(\Omega)}\) and \({W^{m, p(x)}(\Omega)}\) . J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Figueiredo G.M.: Existence and multiplicity of solutions for a class of \({p\&q}\) elliptic problems with critical exponent. Math. Nachr. 286, 1129–1141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Figueiredo G.M.: Existence of a solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706–713 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Figueiredo G.M.: Existence of positive solutions for a class of \({p\&q}\) elliptic problems with critical growth on \({\mathbb{R}^N}\) . J. Math. Anal. Appl. 378, 507–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Figueiredo G.M., Santos Junior J.R.: Multiplicty of solutions for a Kirchhoff equation with subcritical or critical growth. Differential and Integral Equations. 25, 853–868 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Figueiredo G.M., Furtado M.F.: Positive solutions for some quasilinear equations with critical and supercritical growth. Nonlinear Anal. 66, 1600–1616 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fragnelli G.: Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 367, 204–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fu Y.Q.: The principle of concentration compactness in \({L^p(x)}\) spaces and its application. Nonlinear Anal. 71, 1876–1892 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu Y., Xiang M.: Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl. Anal. 95, 524–544 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Gongbao and Z. Guo. Multiple Solutions for the \({p\&q}\) -Laplacian problem with critical exponent. Acta Mathematica Scientia 29 B(4) (2009), 903-918.

  37. Halsey T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  Google Scholar 

  38. A. Hamydy, M. Massar and N. Tsouli. Existence of Solutions for \({p}\) – Kirchhoff type problems with critical exponent. Electronic Journal of Differential Equations 105 (2011), 1-8.

  39. F. Hongzhuo and S. Yaotian. Existence of infinitely many solutions for elliptic problems with critical exponent. Acta Mathematica Scientia 24 B(3) (2004), 395-402.

  40. Kim I.H., Kim Y.: Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents. Manuscripta Math. 147, 169–191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kovӑcik O., Rӑkosnik J.: On spaces \({L^{p(x)}}\) and \({W^{k,p(x)}}\) . Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  42. Li Z.X., Shen Y.T.: Existence of Nontrivial Solutions for p-Laplacian-Like Equations. Acta Mathematicae Applicatae Sinica, English Series, 27, 393–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li Q., Yang Z.: Multiple solutions for N-Kirchhoff type problems with critical exponential growth in \({\mathbb{R}^N}\) . Nonlinear Analysis 117, 159–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. L. Lions. On some questions in boundary value problems of mathematical physics. North-Holland Mathematics Studies (Contemporary developments in continuum mechanics and partial differential equations) 30 (1978), 284-346.

  45. G. R. Kirchhoff. Vorlesungen über Mathematische Physik: Mechanik. (Leipzig: Teubner, 1883).

  46. Rajagopal K.R., Ružička M.: Mathematical modelling of electrorheological fluids. Cont. Mech. Term. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  47. D. Repovš. Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13 6 (2015), 645-661.

  48. Rodrigues M.M.: Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for \({p(x)}\) –Laplacian-like Operators. Mediterr. J. Math. 9, 211–223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Ružička. Electrorheological Fluids Modeling and Mathematical Theory. (Berlin: Springer-Verlag, 2002).

  50. J. Simon. Régularité de la solution d’une équation non linéaire dans \({\mathbb{R}^N}\) . Journés d’Analyse Non Linéaire (Lecture Notes in Mathematics) 655 (1978), 205-227.

  51. X. Wu. Existence of nontrivial solutions and high energy solutions for Schrödinger- Kirchhoff-type equations in \({\mathbb{R}^N}\). Nonlinear Anal. Real World Appl. 12 (2011), 1278- 1287.

  52. Zhikov V.V.: On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 226, 67–81 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olímpio Hiroshi Miyagaki.

Additional information

First author was supported by CAPES/Brazil, the second author named was partially supported by INCTMAT/CNPq/Brazil and CNPq/Brasil 304015/2014-8, while third author was supported by Grant 2015/11912-6, São Paulo Research Foundation (FAPESP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, E.J., Miyagaki, O.H. & Rodrigues, R.d.S. Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent. Milan J. Math. 85, 71–102 (2017). https://doi.org/10.1007/s00032-017-0266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-017-0266-9

Mathematics Subject Classification (2010)

Keywords

Navigation