Skip to main content
Log in

Intermetallic WSi2–W5Si3 Alloy by Magnesiothermic SHS Reaction

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Intermetallic tungsten silicide alloy WSi2–W5Si3 was successfully synthesized via magnesiothermic SHS reaction in the WO3–Si–Mg system. Equilibrium composition of combustion products was calculated by standard Gibbs energy minimization method and the combustion products were characterized by XRD, SEM, and EDX. The synthesized alloy had a density of 8.97 g/cm3 (96.4% of theoretical). The process can be readily recommended for practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shon, I.J., Rho, D.H., Kim, H.C., and Munir, Z.A., Dense WSi and WSi–20 vol. % ZrO composite synthesized by pressure-assisted field-activated combustion, J. Alloys Comp., 2001, vol. 322, no. 1, pp. 120–126. doi https://doi.org/10.1016/S0925-8388(01)01167-7

    Article  Google Scholar 

  2. Oh, D.Y., Kim, H.C., Yoon, J.K., and Shon, I.J., Simultaneous synthesis and consolidation process of ultra-fine WSi2–SiC and its mechanical properties, J. Alloys Comp., 2005, vol. 386, no. 1, pp. 270–275. doi https://doi.org/10.1016/j.jallcom.2004.05.069

    Article  Google Scholar 

  3. Tao, X., Jund, P., Colinet, C., and Tedenac, J.-C., First-principles study of the structural, electronic and elastic properties of W5Si3, Intermetallics, 2010, vol. 18, no. 4, pp. 688–693. doi https://doi.org/10.1016/j.intermet.2009.11.008

    Article  Google Scholar 

  4. Lawamoto, N. and Uesake, S., Mechanical alloying of transition metal-silicon mixed powder, Mater. Sci. Forum., 1992, vol. 88, pp. 763–770. doi. https://doi.org/10.4028/www.scientific.net/MSF.88-90.763

    Google Scholar 

  5. Petrovic, J.J., High temperature structural silicides, Ceram. Eng. Sci. Proc., 1997, vol. 18, pp. 3–17.

    Google Scholar 

  6. Munir, Z. A., Shon, I.J., and Yamazaki, K., US Patent 5794113, 1998.

  7. Morales, G. and Huang, R., US Patent 6100192, 2000.

  8. Merzhanov, A.G., Combustion processes that synthesize materials, J. Mater. Process. Technol, 1996, vol. 56, nos. 1–4, pp. 222–241. doi https://doi.org/10.1016/0924-0136(95)01837-9

    Article  Google Scholar 

  9. Niyomwas, S., Preparation of aluminum reinforced with TiB2–Al2O3–FexAly composites derived from natural ilmenite, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 150–156. doi https://doi.org/10.3103/S1061386210020111

    Article  Google Scholar 

  10. Sakaki, M., Behnami, A.K., and Bafghi, M.Sh., An investigation of the fabrication of tungsten carbide–alumina composite powder from WO3, Al, and C reactants through microwave-assisted SHS process, Int. J. Refract. Met. Hard Mater, 2014, vol. 44, pp. 142–147. doi https://doi.org/10.1016/j.ijrmhm.2014.02.003

    Article  Google Scholar 

  11. Chanadee, T., Wannasin, J., and Niyomwas, S., Synthesis of WSi2 and W2B intermetallic compound by in-situ self-propagating high-temperature synthesis reaction, J. Ceram. Soc. Jpn, 2014, vol. 122, no. 60, pp. 496–501. doi https://doi.org/10.2109/jcersj2.122.496

    Article  Google Scholar 

  12. Romero, F.J.N., Synthesis of a (WSi2, W5Si3)–SiC composite using the reaction between WC and Si, Abstr. Int. Conf. on Composite Materials by ICCM, Paris, 2000, vol. 1, p. 637.

    Google Scholar 

  13. Outokumpu HSC Chemistry® for Windows, version HSC 4.1. Finland, Outokumpu Research Oy, 1999.

    Google Scholar 

  14. Gokcen, N.A. and Reddy, R.G., Thermodynamics, New York: Plenum Press, 1996.

    Book  Google Scholar 

  15. Moore, J. and Feng, H.J., Combustion synthesis of advanced materials, I: Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, nos. 4–5, pp. 243–273. doi https://doi.org/10.1016/0079-6425(94)00011-5

    Article  Google Scholar 

  16. ASTM C373-88(2006): Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, ASTM International, West Conshohocken, PA, 2006. doi https://doi.org/10.1520/C0373-88R0610.1520/C0373-88R06

  17. Gnesin, B.A., Gnesin, I.B., and Nekrasov, A.N., The interaction of carbon with Mo5Si3 and W5Si3 silicides: Nowotny phase synthesis, Intermetallics, 2013, vol. 41, pp. 82–95. doi https://doi.org/10.1016/j.intermet.2013.04.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Niyomwas.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maung, S.T.M., Chanadee, T. & Niyomwas, S. Intermetallic WSi2–W5Si3 Alloy by Magnesiothermic SHS Reaction. Int. J Self-Propag. High-Temp. Synth. 28, 50–55 (2019). https://doi.org/10.3103/S1061386219010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219010096

Keywords

Navigation