Skip to main content

Advertisement

Log in

DhLHY, a Circadian Expressed Gene of Doritaenopsis Hybrid, Promotes Floral Transition in Low Temperature, but Postpones Flowering in Overexpressed Transgenic Arabidopsis

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

LATE ELONGATED HYPOCOTYL (LHY) gene is well known to be the core circadian function in Arabidopsis. In this study, DhLHY was obtained from Doritaenopsis ‘Tinny Tender’ (Doritaenopsis Happy smile × Happy valentine), and the sequence contained 2594 base pair (bp) in whole with an open reading frame (ORF) of 1962 bp encoding 653 amino acids. The putative protein of DhLHY included a HTH myb domain and a DNA binding site shared with the reported LHY family. Aligment of amino acid (aa) showed that DhLHY shared high similarity of LHY homologs from other species. Real-time quantitative reversed transcript polymerase chain reaction (qRT-PCR) analysis indicated that DhLHY was a morning-expressed circadian gene, and expressed greater in floral induction under low temperature. DhLHY was expressed both in vegetative and reproductive organs, and the highest level of its transcripts were in the pedicle and stem. Further functional study of DhLHY-overexpressed in Arobidopsis thaliana indicated the delayed bolting time and increased leaf length in transgenic plants. Results suggested that DhLHY participated in the circadian regulation and was response to the low temperature of floral induction in Doritaenopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293(5531):880–883

    Article  PubMed  Google Scholar 

  • An SK, Kim YJ, Kim KS (2013) Inhibition of inflorescence initiation in immature Doritaenopsis queen beer ‘Mantefon’ by photoperiod and temperature. Hort Environ Biotechnol 54(3):223–227

    Article  CAS  Google Scholar 

  • Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000) All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5(12):517–522

    Article  CAS  PubMed  Google Scholar 

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard MG, Runkle ES (2006) Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J Exp Bot 57(15):4043–4049

    Article  CAS  PubMed  Google Scholar 

  • Box MS, Huang BE, Domijan M, Jaeger KE, Khattak AK, Yoo SJ, Sedivy EL, Jones DM, Hearn TJ, Webb AAR, Grant A, Locke JCW, Wigge PA (2015) ELF3 controls thermoresponsive growth in Arabidopsis. Curr Biol 25:194–199

    Article  CAS  PubMed  Google Scholar 

  • Carré IA (2001) Day-length perception and the photoperiodic regulation of flowering in Arabidopsis. J Biol Rhythm 16:415–423

    Article  Google Scholar 

  • Chen WS, Liu HY, Liu ZH, Yang L, Chen WH (1994) Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol Plant 90:397–395

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the CREPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards KD, Takata N, Johansson M, Jurca M, Novak O, Hényková E, Liverani S, Kozarewa I, Strnad M, Millar AJ, Ljung K, Eriksson ME (2018) Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees. Plant Cell Environ 41(6):1468–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson ME, Webb AA (2011) Plant cell responses to cold are all about timing. Curr Opin Plant Biol 14:731–737

    Article  PubMed  Google Scholar 

  • Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai XL, Stöckle D, Zubieta C, Jaeger KE, Wigge PA (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants 3:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farré EM (2012) The regulation of plant growth by the circadian clock. Plant Biol (Stuttg) 14:401–410

    Article  CAS  Google Scholar 

  • Fernandez V, Takahashi Y, Le Gourrierec J, Coupland G (2016) Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J 86:426–440

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20(11):2960–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Movle R, Milich R, Putteril J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. P Natl Acad Sci USA 107:9458–9463

    Article  CAS  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griebach RJ (1985) An orchid in every pot. Florists’ Review 176:26–30

    Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  CAS  PubMed  Google Scholar 

  • Hepworth J, Dean C (2015) Flowering Locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol 168:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19(4):240–249

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi S (1997) Orchid production and research in Japan. In: Arditti J, Pridgeion AM (eds) Orchid biology: reviews and perspectives, vol VII. Kluwer Academic Publishers, Dordrecht, pp 171–212

    Chapter  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Matsushika A, Yamada H, Sato S, Kato T, Tabata S, Yamashimo T, Mizuno T (2003) Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 44(11):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • James AB, Sullivan S, Nimmo HG (2018a) Global spatial analysis of Arabidopsis natural variants implicates 5′UTR splicing of LATE ELONGATED HYPOCOTYL in responses to temperature. Plant Cell Environ 41:1524–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James AB, Calixto CPG, Tzioutziou NA, Guo WB, Zhang RX, Simpson CG, Jiang WY, Nimmo GA, Brown JWS, Nimmo HG (2018b) How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY). Plant Cell Environ 41:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Song HR, Taylor BL, Carré IA (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J 22(4):935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin GM, Lee N (1984) Effect of temperature on growth and flowering of Phalaenopsis white hybrid. J Chinese Soc Hort Sci 30:223–131

    Google Scholar 

  • Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1:2005.0013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez RG, Runkle ES, Wang YT, Blanchard MG, Hsu T (2007) Growing the best Phalaenopsis, part 3. Temperature and light requirements, height, insect, and disease control. Orchids 76:184–189

    Google Scholar 

  • Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol 150:834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung CR, Lou P, Hermand V, Kim JA (2016) The importance of ambient temperature to growth and the induction of flowering. Front Plant Sci 7:1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2(5):629–641

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17(8):2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portolés S, Más P (2010) The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 6(11):e1001201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pridgeon A (2000) The illustrated encyclopedia of orchids. Timber Press, Portland

    Google Scholar 

  • Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15:259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin QP, Kaas Q, Zhang C, Zhou LP, Zhou MB, Sun XM, Zhang LL, Paek KY, Cui YY (2012) The cold awakening of Doritaenopsis ‘tinny tender’ orchid flowers: the role of leaves in cold-induced bud dormancy release. J Plant Growth Regul 31:139–155

    Article  CAS  Google Scholar 

  • Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190

    Article  CAS  PubMed  Google Scholar 

  • Rohwer CL (2002) Flowering physiology of Hatiora. MS Thesis, Dept. of Horticulture, Mich. St. Univ., East Lansing

  • Rotor GB (1952) Daylength and temperature in relation to growth and flowering of orchids. Cornell Expt Sta Bull 885:3–47

    Google Scholar 

  • Sakanishi Y, Imanishi H, Isida G (1980) Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bul Univ Osaka Pref Ser B 32:1–9

    Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93(7):1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM, Turner AS, Laurie DA (2012) The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J 71:71–84

    Article  CAS  PubMed  Google Scholar 

  • Song J, Irwin J, Dean C (2013) Remembering the prolonged cold of winter. Curr Biol 23:R807–R811

    Article  CAS  PubMed  Google Scholar 

  • Sun XM, Qin QP, Zhang J, Zhang C, Zhou MB, Paek KY, Cui YY (2012) Cloning and characterization of a Doritaenopsis hybrid PRP39 gene involved in flowering time. Plant Cell Tissue Organ Cult 110:347–357

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Lee N (1994) Another look at an old crop: potted blooming orchids -part 2. Greenh Grow 12(2):36–38

    Google Scholar 

  • Went FW (1957) The experimental control of plant growth. Chronica Bot 17:148–152

    Google Scholar 

  • Wigge PA (2013) Ambient temperature signaling in plants. Curr Opin Plant Biol 16:661–666

    Article  CAS  PubMed  Google Scholar 

  • Xuan N, Jin Y, Zhang H, Xie Y, Liu Y, Wang G (2011) A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ Cult 107(1):101–112

    Article  CAS  Google Scholar 

  • Yakir E, Hilman D, Kron I, Hassidim M, Melamed-Book N, Green RM (2009) Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of Arabidopsis. Plant Physiol 150:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 4:265–275

    Article  CAS  PubMed  Google Scholar 

  • Yoneda K, Momose H, Kubota S (1991) Effect of daylength and temperature in juvenile and adult Phalaenopsis plants. J Japan Soc Hort Sci 60:651–657

    Article  Google Scholar 

  • Zakizadeh H, Stummann BM, Lütken H, Müller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tissue Organ Cult 101:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31170658) and Key Project of Natural Science Foundation of Zhejiang province (LZ15C160003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Cui.

Additional information

Communicated by: Yuan Qin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Cheng, Q., Li, H. et al. DhLHY, a Circadian Expressed Gene of Doritaenopsis Hybrid, Promotes Floral Transition in Low Temperature, but Postpones Flowering in Overexpressed Transgenic Arabidopsis. Tropical Plant Biol. 13, 162–171 (2020). https://doi.org/10.1007/s12042-019-09250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-019-09250-2

Keywords

Navigation