Skip to main content
Log in

Expanded Two-Dimensional Layered Vermiculite Supported Nickel Oxide Nanoparticles Provides High Activity for Acetylene Carbonylation to Synthesize Acrylic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

When acrylic acid (AA) is synthesized from acetylene carbonylation using supported nickel as a heterogeneous catalyst, it is important to select a suitable carrier material. Accordingly, we prepared a series of nickel-loaded catalysts using treated expanded two-dimensional layered vermiculite (2D-VT), NaY, HY, MCM-41, and talcum powder (TP) as carriers. As a result, it was found that the calcined nickel-supported expanded NiO/2D-VT exhibited excellent catalytic performance as a catalyst. The highest yield (83.1%) was obtained. We used XRD, SEM, TEM, BET, FTIR, TGA, ICP and XPS to thoroughly characterize the catalysts. It was found that the two-dimensional layered structure of vermiculite (VT) itself with a hydroxyl structure provides a loading site for the active metal NiO, which promotes the formation of a hydrogen carboxyl group. And the excellent thermal stability of VT inhibits the formation of carbon deposits in the NiO/2D-VT catalyst during the reaction. Compared with other catalysts, the NiO/2D-VT catalyst has significantly less carbon deposits, more cycles are used, and activity decreases more slowly. In addition, we also studied the reasons for the decrease in the activity of the NiO/2D-VT catalyst used repeatedly, and found that the loss of NiO supported on the VT two-dimensional layered structure is the main reason for the catalyst deactivation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corma A (2014) Chem Rev 114:1545–1546

    Article  CAS  Google Scholar 

  2. Schobert H (2014) Chem Rev 114:1743–1760

    Article  CAS  Google Scholar 

  3. Yan BH, Xu PC, Guo CY, Jin Y, Cheng Y (2012) Chem Eng J 207:109–116

    Article  Google Scholar 

  4. Fu R, Zheng L (2017) J Chem Res 41:341–345

    Article  CAS  Google Scholar 

  5. Zhao S, Chen SY, Ma SW, Xiang WG, Song QB (2016) Appl Energy 169:642–651

    Article  Google Scholar 

  6. Tang CM, Zeng Y, Cao P, Yang XG, Wang GY (2009) Catal Lett 129:189–193

    Article  CAS  Google Scholar 

  7. Walter R, Robert S (1962) Patent, 3023237

  8. Weissermel K, Arpe HJ (2008) Book

  9. Anastas P, Eghbali N (2010) Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  10. Lin TJ, Xie H, Meng X, Shi L (2015) Catal Commun 68:88–92

    Article  CAS  Google Scholar 

  11. Lin TJ, Meng X, Shi L (2015) J Mol Catal A 396:77–83

    Article  CAS  Google Scholar 

  12. Bhattacharyya SK, Bhattacharyya DP (1966) J Chem Technol Biotechnol 16:18–21

    CAS  Google Scholar 

  13. Bhattacharyya SK, Sen AK (1964) Ind Eng Chem Process Des Dev 3:169–176

    Article  CAS  Google Scholar 

  14. Bhattacharyya SK, Sen AK (2010) J Chem Technol Biotechnol 13:498–505

    Google Scholar 

  15. Wei H, Mccormick JR, Lobo RF, Chen JG (2007) J Catal 246:40–51

    Article  Google Scholar 

  16. Pereira C, Kokotailo GT, Gorte RJ (1991) J Phys Chem 95:705–709

    Article  CAS  Google Scholar 

  17. Xie H, Yi DZ, Shi L, Meng X (2017) Chem Eng J 313:663–670

    Article  CAS  Google Scholar 

  18. Lin TJ, Meng X, Shi L (2014) Appl Catal A 485:163–171

    Article  CAS  Google Scholar 

  19. Li PP, Wen B, Yu F, Zhu MY, Guo XH, Han Y, Kang LH, Huang X, Dan JM, Ouyang FH, Dai B (2016) Fuel 171:263–269

    Article  CAS  Google Scholar 

  20. Zhang K, Yu F, Zhu MY, Dan JM, Wang XG, Zhang JL, Dai B (2018) Catalysts 8:100

    Article  Google Scholar 

  21. Song Q, Altaf N, Zhu MY, Li JB, Ren X, Dan JM, Dai B, Louis B, Wang Q, Yu F (2019) Sustain Energy Fuels 3:965–974

    Article  CAS  Google Scholar 

  22. Li PP, Zhu MY, Dan JM, Kang LH, Lai LF, Cai XY, Zhang JS, Yu F, Tian ZQ, Dai B (2017) Chem Eng J 326:774–780

    Article  CAS  Google Scholar 

  23. Fu ZL, Liu T, Kong XR, Liu Y, Xu J, Zhang B, Chen HM, Chen ZY (2019) Mater Lett 238:175–178

    Article  CAS  Google Scholar 

  24. Li L, Yao J, Fang XY, Huang YX, Mu Y (2017) Sci Rep 7:30–41

    Article  Google Scholar 

  25. Wei H, Li X (2017) Sol Energy Mater Sol Cells 166:1–8

    Article  CAS  Google Scholar 

  26. Zhao B, Ke X-K, Bao J-H, Wang C-L, Dong L, Chen Y-W, Chen H-L (2009) J Phys Chem C 113:14440–14447

    Article  CAS  Google Scholar 

  27. Tomellini M (1992) J Electron Spectrosc Relat Phenom 58:75–78

    Article  CAS  Google Scholar 

  28. Arunachalam P, Ghanem MA, Al-Mayouf A, Alshalwi M, Abd Elkader O (2017) Mater Res Express 4:25–35

    Article  CAS  Google Scholar 

  29. Liu JY, Chen T, Jian PM, Wang LX, Yan XD (2018) J Colloid Interface Sci 526:295–301

    Article  CAS  Google Scholar 

  30. Węgrzyn A, Stawiński W, Freitas O, Komędera K, Błachowski A, Jęczmionek Ł, Dańko T, Mordarski G, Figueiredo S (2018) Appl Clay Sci 155:37–49

    Article  Google Scholar 

  31. Stawiński W, Węgrzyn A, Mordarski G, Skiba M, Freitas O, Figueiredo S (2018) Appl Clay Sci 161:6–14

    Article  Google Scholar 

  32. Adewuyi A, Oderinde RA (2018) Polym Bull 4:1–23

    Google Scholar 

  33. Chen LY, Wu PG, Chen MQ, Lai XL, Ahmed ZB, Zhu NG, Dang Z, Bi YZ, Liu TY (2018) Appl Clay Sci 159:74–82

    Article  CAS  Google Scholar 

  34. Liu YF, He ZH, Zhou L, Hou ZS, Eli WM (2013) Catal Commun 42:40–44

    Article  CAS  Google Scholar 

  35. Liu NW, Xie H, Cao HX, Shi L, Meng X (2019) Fuel 242:617–623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 21666033), Yangtze River Scholar Research Project of Shihezi University (No. CJXZ201601), and International Science and Technology Cooperation Project of Bingtuan (No. 2018BC002), International Science and Technology Cooperation Project of Shihezi Univeristy (No. GJHZ201804). Competing financial interests the authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangbing Li or Mingyuan Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Guo, D., Shang, H. et al. Expanded Two-Dimensional Layered Vermiculite Supported Nickel Oxide Nanoparticles Provides High Activity for Acetylene Carbonylation to Synthesize Acrylic Acid. Catal Lett 150, 674–682 (2020). https://doi.org/10.1007/s10562-019-02985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02985-3

Keywords

Navigation