Skip to main content
Log in

High temperature electromechanical response of multilayer piezoelectric laminates under AC electric fields for fuel injector applications

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper examines theoretically and experimentally the dynamic electromechanical response of multilayer piezoelectric laminates for fuel injectors at high temperatures. A phenomenological model of depolarization at high temperatures was used, and the temperature dependent piezoelectric coefficients were obtained. The high temperature electromechanical fields of the multilayer piezoelectric actuators under AC electric fields were then calculated by the finite element method. In addition, test data on the electric field induced strain at high temperatures, which verify the model, were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Glynne-Jones, P., Coletti, M., White, N.M., Gabrielm, S.B., Bramanti, C.: A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines. Acta Astronaut. 67, 194–203 (2010)

    Article  Google Scholar 

  • Hom, C.L., Shankar, N.: A numerical analysis of relaxor ferroelectric multilayered actuators and 2-2 composite arrays. Smart Mater. Struct. 4, 305–317 (1995)

    Article  Google Scholar 

  • Narita, F., Shindo, Y., Mikami, M.: Analytical and experimental study of nonlinear bending response and domain wall motion in piezoelectric laminated actuators under AC electric fields. Acta Mater. 53, 4523–4529 (2005)

    Article  Google Scholar 

  • Narita, F., Hasegawa, R., Shindo, Y.: Electromechanical response of multilayer piezoelectric actuators for fuel injectors at high temperatures. J. Appl. Phys. 110, 084510 (2014)

    Google Scholar 

  • Sapsathiarn, Y., Singh, Y., Rajapakse, R.K.N.D.: Numerical modelling of piezoelectric actuators exposed to hydrogen. Acta Mech. 225, 2943–2957 (2014)

    Article  Google Scholar 

  • Satkoski, C.A., Shaver, G.M., More, R., Meckl, P., Memering, D., Venkataraman, S., Syed, J., Carmona-Valdes, J.: Dynamic modeling of a piezoelectric actuated fuel injector. J. Dyn. Syst. Meas. Control 133, 051011 (2011)

    Article  Google Scholar 

  • Senousy, M.S., Li, F.X., Mumford, D., Gadala, M., Rajapakse, R.K.N.D.: Thermo-electro-mechanical performance of piezoelectric stack actuators for fuel injector applications. J. Intell. Mater. Syst. Struct. 20, 387–399 (2009a)

    Article  Google Scholar 

  • Senousy, M.S., Rajapakse, R.K.N.D., Mumford, D., Gadala, M.S.: Self-heat generation in piezoelectric stack actuators used in fuel injectors. Smart Mater. Struct. 18, 045008 (2009b)

    Article  Google Scholar 

  • Shindo, Y.: Dielectric/Ferroelectric Material Systems and Structures, Electromagneto-Mechanics of Material Systems and Structures, pp. 49–218. Wiley, New York (2015)

    Book  Google Scholar 

  • Shindo, Y., Narita, F.: Piezomechanics in PZT stack actuators for cryogenic fuel injectors. In: Vertechy, R., Vassura, G. (eds.) Smart Actuation and Sensing Systems—Recent Advances and Future Challenges, pp. 639–656. InTech Publishing Company, London (2012)

    Google Scholar 

  • Shindo, Y., Narita, F., Sasakura, T.: Cryogenic electromechanical behavior of multilayer piezo-actuators for fuel injector applications. J. Appl. Phys. 110, 084510 (2011)

    Article  Google Scholar 

  • Shindo, Y., Sasakura, T., Narita, F.: Dynamic electromechanical response of multilayered piezoelectric composites from room to cryogenic temperatures for fuel injector applications. ASME J. Eng. Mater. Technol. 134, 031007 (2012)

    Article  Google Scholar 

  • Turner, R.C., Fuierer, P.A., Newnham, R.E., Shrout, T.R.: Materials for high temperature acoustic and vibration sensors: a review. Appl. Acoust. 41, 299–324 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Narita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For piezoelectric ceramics which exhibit symmetry of a hexagonal crystal of class 6 mm with respect to principal x1, x2 and x3 (poling) axes, the constitutive relations can be written in the following form:

$$ \left\{ {\begin{array}{*{20}c} {\varepsilon_{11} } \\ {\varepsilon_{22} } \\ {\varepsilon_{33} } \\ {2\varepsilon_{23} } \\ {2\varepsilon_{31} } \\ {2\varepsilon_{12} } \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {s_{11} } & {s_{12} } & {s_{13} } & 0 & 0 & 0 \\ {s_{12} } & {s_{11} } & {s_{13} } & 0 & 0 & 0 \\ {s_{13} } & {s_{13} } & {s_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {s_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {s_{44} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {s_{66} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\sigma_{11} } \\ {\sigma_{22} } \\ {\sigma_{33} } \\ {\sigma_{23} } \\ {\sigma_{31} } \\ {\sigma_{12} } \\ \end{array} } \right\} + \left[ {\begin{array}{*{20}c} 0 & 0 & {\bar{d}_{31} } \\ 0 & 0 & {\bar{d}_{31} } \\ 0 & 0 & {\bar{d}_{33} } \\ 0 & {\bar{d}_{15} } & 0 \\ {\bar{d}_{15} } & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {E_{1} } \\ {E_{2} } \\ {E_{3} } \\ \end{array} } \right\} $$
(12)
$$ \left\{ \begin{array}{c} {D_{1} } \\ {D_{2} } \\ D_{3} \\ \end{array} \right\} = \left[ {\begin{array}{cccccc} 0 & 0 & 0 & 0 & {\bar{d}_{15} } & 0 \\ 0 & 0 & 0 & {\bar{d}_{15} } & 0 & 0 \\ {\bar{d}_{31} } & {\bar{d}_{31} } & {\bar{d}_{33} } & 0 & 0 & 0 \\ \end{array} } \right]\left\{ {\begin{array}{c} {\sigma_{11} } \\ {\sigma_{22} } \\ {\sigma_{33} } \\ {\sigma_{23} } \\ {\sigma_{31} } \\ {\sigma_{12} } \\ \end{array} } \right\} + \left[ \begin{array}{ccc} \epsilon_{11}^{T} & 0 & 0 \\ 0 & \epsilon_{11}^{T} & 0 \\ 0 & 0 & \epsilon\epsilon_{33}^{T} \\ \end{array} \right]\left\{ {\begin{array}{c} {E_{1} } \\ {E_{2} } \\ {E_{3} } \\ \end{array} } \right\} $$
(13)

where

$$ \sigma_{23} = \sigma_{32} ,\quad \sigma_{31} = \sigma_{13} ,\quad \sigma_{12} = \sigma_{21} $$
(14)
$$ \varepsilon_{23} = \varepsilon_{32} ,\quad \varepsilon_{31} = \varepsilon_{13} ,\quad \varepsilon_{12} = \varepsilon_{21} $$
(15)
$$ \begin{aligned} s_{11} & = s_{1111} = s_{2222} ,\quad s_{12} = s_{1122} ,\quad s_{13} = s_{1133} = s_{2233} ,\quad s_{33} = s_{3333} , \\ s_{44} & = 4s_{2323} = 4s_{3131} ,\quad s_{66} = 4s_{1212} = 2\left( {s_{11} - s_{12} } \right) \\ \end{aligned} $$
(16)
$$ \bar{d}_{15} = 2\bar{d}_{131} = 2\bar{d}_{223} ,\quad \bar{d}_{31} = \bar{d}_{311} = \bar{d}_{322} ,\quad \bar{d}_{33} = \bar{d}_{333} $$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, F., Hasegawa, R. & Shindo, Y. High temperature electromechanical response of multilayer piezoelectric laminates under AC electric fields for fuel injector applications. Int J Mech Mater Des 16, 207–213 (2020). https://doi.org/10.1007/s10999-019-09453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09453-1

Keywords

Navigation