Skip to main content
Log in

Redefinition and crystal chemistry of samarskite-(Y), YFe3+Nb2O8: cation-ordered niobate structurally related to layered double tungstates

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Samarskite-(Y), the mineral known for almost 180 years only in metamict (X-ray amorphous) state, was found as non-metamict crystals in sanidinites of the Laach Lake (Laacher See), Eifel volcanic region, Germany. The crystal structure has been solved for the first time and refined to R1 = 1.1% based on 838 observed [I > 2σ(I)] independent reflections. Samarskite-(Y) is monoclinic, P2/c, a 9.8020(8), b 5.6248(3), c 5.2073(4) Å, β 93.406(4)°, V 286.59(4) Å3, Z = 2. The empirical formula (calculated on 8 O apfu) is \(\left[ {\left( {{\text{Y}}_{0. 2 5} Ln_{0. 1 8} } \right)_{\varSigma 0. 4 3} {\text{Th}}_{0. 3 7} {\text{U}}_{0. 1 3}^{ 4+ } {\text{Ca}}_{0.0 3} } \right]_{\varSigma 0. 9 6} \left( {{\text{Fe}}_{0. 7 3}^{ 3+ } {\text{Mn}}_{0. 1 8}^{ 2+ } } \right)_{\varSigma 0. 9 1} \left( {{\text{Nb}}_{ 1. 8 5} {\text{Ti}}_{0.0 6} {\text{Zr}}_{0.0 6} {\text{Ta}}_{0.0 3} {\text{W}}_{0.0 2} } \right)_{\varSigma 2.0 2} {\text{O}}_{ 8}\). Samarskite-(Y) from the type locality, the Blyumovskaya Pit, Ilmeny Mountains, South Urals, Russia, was studied for comparison; electron microprobe data showed the same species-defining constituents and stoichiometry: \(\left[ {\left( {{\text{Y}}_{0. 3 4} Ln_{0. 20} } \right)_{\varSigma 0. 5 4} {\text{U}}_{0. 4 2}^{ 4+ } {\text{Th}}_{0.0 3} } \right]_{\varSigma 0. 9 9} \left( {{\text{Fe}}_{0. 8 6}^{ 3+ } {\text{Mn}}_{0.0 8}^{ 2+ } } \right)_{\varSigma 0. 9 4} \left( {{\text{Nb}}_{ 1. 1 4} {\text{Ta}}_{0. 70} {\text{Ti}}_{0. 1 5} } \right)_{\varSigma 1. 9 9} {\text{O}}_{ 8}\). Samarskite-(Y) is the first example of cation-ordered niobate structurally related to layered double tungstates AMW2O8, the compounds used as luminophors and active media in solid-state lasers. The pseudo-layered framework of the mineral can be derived from that of wolframite via substitution of W for Nb, whereas each second [FeO6] layer is replaced by [YO8] one. The resulting sequence of layers can be expressed as -[AO8]-[BO6]-[MO6]-[BO6]- leading to the formula AMB2O8 in which A = Y, Ln, Th, U4+, Ca; M = Fe3+, Mn2+; and B = Nb, Ta, Ti. The end-member formula of samarskte-(Y) is YFe3+Nb2O8 (approved by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association, memorandum 90-FH/18).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimoto J, Uejima A, Sugitani Y (1986) Studies on annealing conditions for recovering the original samarskite structure. Kobutsugaku Zasshi 17:159–168 (in Japanese)

    Google Scholar 

  • Albino M, Pechev S, Veber P, Velazquez M, Josse M (2012) Cation ordering in the double tungstate LiFe(WO4)2. Acta Crystallogr C68:i7–i8

    Google Scholar 

  • Baales M, Joris O, Street M, Bittmann F, Weninger B, Wiethold J (2002) Impact of the late glacial eruption of the Laacher See volcano, Central Rhineland, Germany. Quat Res 58:273–288

    Article  Google Scholar 

  • Bayliss P, Levinson AA (1988) A system of nomenclature for rare earth mineral species: revision and extention. Am Mineral 73:422–423

    Google Scholar 

  • Bonshtedt-Kupletskaya EM (1969) Samarskite. In: Chukhrov FV, Bonshtedt-Kupletskaya EM (eds) Minerals, II (3) (complex oxides, titanates, niobates, tantalates, antimonates, hydroxides). Nauka, Moscow, pp 331–339 (in Russian)

    Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G (2013) Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): a multi-isotope (C, N, He, Ne, Ar) approach. Chem Geol 356:193–208

    Article  Google Scholar 

  • Brese NE, O’Keefe DM (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS rapid II diffractometer. Proc Russ Mineral Soc 146(3):104–107

    Google Scholar 

  • Brøgger WC (1906) Die Mineralien der Südnorwegischen Granitpegmatitgänge. I. Niobate, Tantalate. Titanate und Titanoniobate. Skrift Matem-Natur Klasse 6:138–151

    Google Scholar 

  • Bruker (2003) SAINT (ver. 7.60A). Bruker AXS Inc, Madison

    Google Scholar 

  • Bruker (2014) TOPAS, Version 5.0. Bruker AXS Inc, Madison

    Google Scholar 

  • Capitani GC, Mugnaioli E, Guastoni A (2016) What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the Garnet Codera dike pegmatite (Central Italian Alps). Am Mineral 101:1679–1690

    Article  Google Scholar 

  • Cassedanne JP, Baptista A, Černý P (1985) Zircon hafnifère, samarskite et columbite d’une pegmatite du Rio Doce, Minas Gerais, Brésil. Can Mineral 23:563–567

    Google Scholar 

  • Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294

    Article  Google Scholar 

  • Chukanov NV, Aksenov SM, Rastsvetaeva RK, Belakovskiy DI, Göttlicher J, Britvin SN, Möckel S (2012a) Christofschäferite, (Ce, La, Ca)4Mn2+(Ti, Fe3+)3(Fe3+, Fe2+, Ti)(Si2O7)2O8, a new chevkinite-group mineral from the Eifel area, Germany. New Data Miner 47:33–42 (in Russian)

    Google Scholar 

  • Chukanov NV, Blass G, Pekov IV, Belakovskiy DI, Van KV, Rastsvetaeva RK, Aksenov SM (2012b) Perrierite-(La), (La, Ce, Ca)4Fe2+(Ti, Fe)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany. Geol Ore Depos 54:647–655

    Article  Google Scholar 

  • Chukanov NV, Blass G, Zubkova NV, Pekov IV, Pushcharovskii DYu, Prinz H (2013) Hydroxymanganopyrochlore: a new mineral from the Eifel Volcanic Region, Germany. Dokl Earth Sci 449(1):342–345 (in Russian)

    Article  Google Scholar 

  • Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer Ch, Vigasina M, Van K (2014) Laachite, (Ca, Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111

    Article  Google Scholar 

  • Della Ventura G, Bellatreccia F, Williams CT (2000) Zirconolite with significant REEZrNb(Mn, Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. Can Mineral 38:57–65

    Article  Google Scholar 

  • Demarçay E-A (1901) Sur un nouvel élément l’europium. Compt Rend 132:1484–1486

    Google Scholar 

  • Dill HG (2015) Pegmatites and aplites: their genetic and applied ore geology. Ore Geol Rev 69:417–561

    Article  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  • Donakowski MD, Görne A, Vaughey JT, Poeppelmeier KR (2013) J Am Chem Soc 135:9898–9906

    Article  Google Scholar 

  • Ellsworth HV (1928) A mineral related to samarskite from the Woodcox Mine, Hybla Ontario. Am Mineral 13:63–65

    Google Scholar 

  • Engelhaupt B, Schüller W (2015) Samarskit-(Y). In: Engelhaupt B, Schüller W (eds) Mineral Reich Eifel. Christian Weise Verlag, München, p 249

    Google Scholar 

  • Ercit TS (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y, REE, U, Th)-(Nb, Ta, Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303

    Article  Google Scholar 

  • Ercit TS, Černý P (1988) The crystal structure of foordite. Can Mineral 26:899–903

    Google Scholar 

  • Ercit TS, Černý P, Hawthorne FC, McCammon CA (1992) The wodginite group. II. Crystal chemistry. Can Mineral 30:613–631

    Google Scholar 

  • Ewing RC (1975) The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: discussion. Am Mineral 60:728–733

    Google Scholar 

  • Ferguson RB, Hawthorne FC, Grice JD (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. II. Wodginite. Can Mineral 14:550–560

    Google Scholar 

  • Galliski MA, Márquez-Zavalía MF, Černý P, Lira R, Roberts AC, Bernhardt H-J (2016) Achalaite, Fe2+TiNb2O8, a new member of the wodginite group from the La Calandria granitic pegmatite, Córdoba, Argentina. Can Mineral 54:1043–1052

    Article  Google Scholar 

  • Grice JD, Ferguson RB, Hawthorne FC (1976) The crystal structure of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. I. Tantalite and ixiolite. Can Mineral 14:550–560

    Google Scholar 

  • Grigor’ev DP (1945) Regular intergrowth of samarskite and columbite from the Ilmeny Mountains. Zap Vsesoyuzn Mineral Obsch 74:57–61 (in Russian)

    Google Scholar 

  • Hanson SL, Simmons WB Jr, Falster AU (1998) Nb–Ta–Ti oxides in granitic pegmatites from the Topsham pegmatite district, southern Maine. Can Mineral 36:601–608

    Google Scholar 

  • Hanson SL, Simmons WB, Falster AU, Foord EE, Lichte FE (1999) Proposed nomenclature for samarskite-group minerals: new data on ishikawaite and calciosamarskite. Mineral Mag 63:27–36

    Article  Google Scholar 

  • Hermann R (1856) Untersuchungen über Niobium. J Prakt Chem 68:65–97

    Article  Google Scholar 

  • Keller C (1962) Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Z Anorg Allg Chem 318:89–106

    Article  Google Scholar 

  • Kim JS, Lee JC, Cheon CI, Kang H-J (2006) Crystal structures and low temperature cofiring ceramic property of (1–x)(Li, RE)W2O8-xBaWO4 ceramics (RE = Y, Yb). Jpn J Appl Phys 45:7397–7400

    Article  Google Scholar 

  • Kimura K (1922) Ishikawaite: a new mineral from Ishikawa, Iwaki. J Geol Soc Tokyo 29:316–320 (in Japanese)

    Google Scholar 

  • Kjellman J (2017) ABC2O8—a new look on the crystal chemistry and classification of samarskite group minerals. In: PEG2017: proc. 8th int. symp. granitic pegmatites, pp 64–67

  • Klevtsov PV, Klevtsova RF (1970) Single-crystal synthesis and investigation of the double tungstates NaR3+(WO4)2, where R3+ = Fe, Sc, Ga and In. J Solid State Chem 2:278–282

    Article  Google Scholar 

  • Kolitsch U, Kristiansen R, Raade G, Tillmanns E (2010) Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway. Eur J Mineral 22:309–316

    Article  Google Scholar 

  • Kolitsch U, Mills SJ, Miyawaki R, Blass G (2012) Ferriallanite-(La), a new member of the epidote supergroup from the Eifel, Germany. Eur J Mineral 24:741–747

    Article  Google Scholar 

  • Komkov AI (1965) Crystal structure and chemical composition of samarskite. Dokl Acad Sci USSR Earth Sci Sect 160:127–129

    Google Scholar 

  • Konovalenko SI, Ananyev SA, Chukanov NV, Rastsvetaeva RK, Aksenov SM, Baeva AA, Gainov RR, Vagizov FG, Lopatin ON, Nebera TS (2015) A new mineral species rossovskyite, (Fe3+, Ta)(Nb, Ti)O4: crystal chemistry and physical properties. Phys Chem Miner 42:825–833

    Article  Google Scholar 

  • Lagatsky AA, Han X, Serrano MD, Cascales C, Zaldo C, Calvez S, Dawson MD, Gupta JA, Brown CTA, Sibbett W (2010) Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm. Opt Lett 35:3027–3029

    Article  Google Scholar 

  • Le Flem G, Salmon R, Hagenmuller P (1969) Cation distribution in an ordered wolframite-type structure. Compt Rend Acad Sci C 268:1431–1434

    Google Scholar 

  • Lecoq de Boisbaudran P-É (1879) Recherches sur le samarium, radical d’une terre nouvelle extradite de la samarskite. Compt Rend Acad Sci 89:212–214

    Google Scholar 

  • Lecoq de Boisbaudran P-É (1886) Le Yα de M. de Marignac est dèfinitivement nomme gadolinium. Compt Rend Acad Sci 102:902

    Google Scholar 

  • Maier AA, Provotorov MV, Balashov VA (1973) Double molybdates and tungstates of the rare earths and alkali metals. Russ Chem Rev 42:822–833

    Article  Google Scholar 

  • Makarochkin BA (1982) Chemical composition of accessory titano-tantalo-niobates of Ilmen Mountains. U.S.S.R. Academy of Sciences, Sverdlovsk (in Russian)

    Google Scholar 

  • Malczewski D, Grabias A (2008) 57Fe Mössbauer spectroscopy and X-ray diffraction study of complex metamict minerals. Part II. Hyperfine Interact 186:75–81

    Article  Google Scholar 

  • Malczewski D, Grabias A, Dercz G (2010) 57Fe Mössbauer spectroscopy of radiation damaged samarskites and gadolinites. Hyperfine Interact 195:85–91

    Article  Google Scholar 

  • Marignac MC (1880) Sur les terres de la samarskite. Ann Chim Phys 20:535–557

    Google Scholar 

  • Miyake C, Ohana S, Imoto S (1987) Oxidation states of U and Nb in U–Nb–O ternary oxides by means of magnetic susceptibility, XPS and ESR. Inorg Chim Acta 140:133–135

    Article  Google Scholar 

  • Nakai I, Akimoto J, Imafuku M, Miyawaki R, Sugitani Y, Koto K (1987) Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses. Phys Chem Mineral 15:113–124

    Article  Google Scholar 

  • Nilssen B (1970) Samarskites. Chemical composition, formula and crystalline phases produced by heating. Norsk Geol Tidsskr 50:357–373

    Google Scholar 

  • Ostwald W (1897) Studien über die Bildung und Umwandlung fester Koerper. Z Phys Chem 22:289–330

    Google Scholar 

  • Palache C, Berman H, Frondel C (1944) The system of mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837–1892, volume I: elements, sulfides, sulfosalts, oxides, 7th edn. Wiley, New York

  • Papoutsa AD, Pe-Piper G (2013) The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia. Am Mineral 98:444–462

    Article  Google Scholar 

  • Pekov IV (1998) Minerals first discovered on the Territory of the Former Soviet Union. OP, Moscow

    Google Scholar 

  • Pieczka A, Szuszkiewicz A, Szełęg E, Ilnicki S, Nejbert K, Turniaiak K (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. Can Mineral 52:303–319

    Article  Google Scholar 

  • Pollnau M, YaE Romanyuk, Gardillou F, Borca CN, Griebner U, Rivier S, Petrov V (2007) Double tungstate lasers: from bulk toward on-chip integrated waveguide devices. IEEE J Select Top Quantum Electron 13:661–671

    Article  Google Scholar 

  • Polyakov VO (2000) Samarskite. In: Yushkin NP (ed) Mineralogy of urals. Oxides and hydroxides. Part. I. Branch of Russian Academy of Sciences, Miass-Yekaterinburg (in Russian)

    Google Scholar 

  • Polyakov VO, Zhdanov VF, Nishanbaev TP (1980) New receipts of the museum of the Ilmeny state reserve. In: Mineralogicheskie issledovaniya gidrotermalitov Urala, Sverdlovsk, pp 52–58 (in Russian)

  • Popov VA, Popova VI (2006) Ilmeny Mountains: mineralogy of pegmatites. In: Mineralogical almanac, vol 9. Association Ecost and Ocean Pictures Ltd, Littleton, p 151

  • Popov VA, Popova VI, Polyakov VO (2007) Regular intergrowths of minerals in pegmatites from the Il’meny Mountains. Geol Ore Depos 49:573–582

    Article  Google Scholar 

  • Rose G (1839) Beschreibung einiger neuen Mineralien des Urals. Ann Phys 124(12):551–573

    Article  Google Scholar 

  • Rose H (1847) Ueber die Zusammensetzung des Uranotantals und des Columbits vom Ilmengebirge in Sibirien. Ann Phys 147(5):157–169

    Article  Google Scholar 

  • Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8

    Google Scholar 

  • Shibata Y, Kimura K (1922) Chemical investigation of Japanese minerals containing rarer elements. IV. Samarskite and an unnamed mineral from Ishikawa, Iwaki Province. Nippon Kagaku Kaishi 43:301–312

    Article  Google Scholar 

  • Simmons WB, Hanson SL, Falster AU (2006) Samarskite-(Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson County, Colorado. Can Mineral 44:1119–1125

    Article  Google Scholar 

  • Skomurski FN, Ilton ES, Engelhard MH, Arey BW, Rosso KM (2011) Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochim Cosmochim Acta 75:7277–7290

    Article  Google Scholar 

  • Sugitani Y, Suzuki Y, Nagashima K (1984) Recovery of the original samarskite structure by heating in a reducing atmosphere. Am Mineral 69:377–379

    Google Scholar 

  • Sugitani Y, Suzuki Y, Nagashima K (1985) Polymorphism of samarskite and its relationship to other structurally related Nb-Ta oxides with the α-PbO2 structure. Am Mineral 70:856–866

    Google Scholar 

  • Tomašić N, Gajović A, Bermanec V, Linarić MR, Su D, Škoda R (2010) Preservation of the samarskite structure in a metamict ABO4 mineral: a key to crystal structure identification. Eur J Mineral 22:435–442

    Article  Google Scholar 

  • Uher P, Ondrejka M, Konečny P (2009) Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineral Mag 73:1009–1025

    Article  Google Scholar 

  • Van Santen RA (1984) The ostwald step rule. J Phys Chem 88:5768–5769

    Article  Google Scholar 

  • Warner JK, Ewing RC (1993) Crystal chemistry of samarskite. Am Mineral 78:419–474

    Google Scholar 

  • Zharikov EV, Zaldo C, Díaz F (2009) Double tungstate and molybdate crystals for laser and nonlinear optical applications. MRS Bull 34:271–276

    Article  Google Scholar 

  • Zitzer S, Schleifenbaum F, Schleid T (2014) Na2Y3Cl3[TeO3]4: synthesis, crystal structure and spectroscopic properties of the bulk material and its luminescent Eu3+-doped samples. Z Naturforsch B 69:150–158

    Article  Google Scholar 

Download references

Acknowledgements

S.N.B and M.G.K thank Saint-Petersburg State University for financial support (Grant No. 3.42.741.2017). The authors thank the X-ray Diffraction Center of SPSU for providing instrumental and computational resources. We acknowledge Radek Škoda and Giancarlo Capitani for constructive reviews and discussion. We are also grateful to Milan Rieder for the editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Britvin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britvin, S.N., Pekov, I.V., Krzhizhanovskaya, M.G. et al. Redefinition and crystal chemistry of samarskite-(Y), YFe3+Nb2O8: cation-ordered niobate structurally related to layered double tungstates. Phys Chem Minerals 46, 727–741 (2019). https://doi.org/10.1007/s00269-019-01034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01034-0

Keywords

Navigation