Skip to main content
Log in

RETRACTED ARTICLE: Emergent D-Instanton as a Source of Dark Energy

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

This article was retracted on 16 July 2020

A Correction to this article was published on 23 July 2019

This article has been updated

Abstract

We revisit a non-perturbative formulation leading to a vacuum-created gravitational pair of \((3\bar {3})\)-brane by a Poincare dual higher form U(1) gauge theory on a D4-brane. In particular, the analysis has revealed a dynamical geometric torsion \(\mathcal {H}_{3}\) for an onshell Neveu-Schwarz (NS) form on a fat 4-brane. We argue that a D-instanton can be a viable candidate to incorporate the quintessence correction hidden to an emergent (3 + 1)-dimensional brane universe. It is shown that a dynamical non-perturbative correction may be realized with an axionic scalar QFT on an emergent anti-3-brane within a gravitational pair. The theoretical tool provokes thought to believe for an extra instantaneous dimension transverse to our classical brane-universe in an emergent scenario. Interestingly a D-instanton correction, sourced by an axion on an anti-3-brane, may serve as a potential candidate to explain the accelerated rate of expansion of our 3-brane universe and may provide a clue to the origin of dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 July 2019

    In the original article Supriya Kar was listed as a co-author without his permission. The sole author of this article is Deobrat Singh.

  • 16 July 2020

    The author has retracted this article [1] because it significantly overlaps with a previously published article by Singh and Kar [2].

References

  1. S. Perlmutter, et al., Supernova cosmology project collaboration. Astrophys. J. 517, 565 (1999). arXiv:[astro-ph/9812133]

    ADS  Google Scholar 

  2. Supernova Serach Team, (G.Riess et.al). Astrom. J. 116, 1009 (1998)

    Google Scholar 

  3. D.N. Spergel, et al., WMAP collaboration. Astrophys. J. Suppl. 148, 175 (2003)

    ADS  Google Scholar 

  4. D.J. Eisenstein, et al., SDSS collaboration. Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  5. K.N. Abazajian, et al., SDSS collaboration. Astrophys. J. Suppl. 182, 543 (2009)

    ADS  Google Scholar 

  6. P.A.R. Ade, et al., Planck collaboration. Astron. Astrophys. 571, A16 (2014)

    Google Scholar 

  7. E. J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D. 15, 1753 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  8. T. Clifton, P. G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    MathSciNet  ADS  Google Scholar 

  9. H. S. Yang, Emergent geometry and quantum gravity. Mod. Phys. Lett. 25, 2381 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  10. S. Candelas, G. T. Horowitz, A. Strominger, Vacuum configurations for superstrings. Nucl. Phys. 258, 46 (1985)

    MathSciNet  ADS  Google Scholar 

  11. D. S. Freed, Determinants, torsion, and strings. Comm. Math. Phys. 107, 483 (1986)

    MathSciNet  MATH  ADS  Google Scholar 

  12. C.G. Callan, R.C. Meyers, M.J. Perry, Black holes in string theory. Nucl. Phys. 311, 673 (1988/89)

  13. D. Garfinkle, G.T. Horowitz, A. Strominger, Charged black holes in string theory. Phys. Rev. 43, 31403143 (1991)

    MathSciNet  Google Scholar 

  14. S. B. Giddings, A. Strominger, Exact black five-branes in critical superstring theory. Phys. Rev. Lett. 67, 2930 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  15. A. Sen, Strong–weak coupling duality in four-dimensional string theory. Int. J. Mod. Phys. 9, 3707 (1994)

    MathSciNet  MATH  ADS  Google Scholar 

  16. E. Witten, String theory dynamics in various dimensions. Nucl. Phys. 443, 85 (1995)

    MathSciNet  MATH  ADS  Google Scholar 

  17. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    MathSciNet  MATH  ADS  Google Scholar 

  18. S. W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    MathSciNet  MATH  ADS  Google Scholar 

  19. C. Bachas, M. Porrati, Pair creation of open strings in an electric field. Phys. Lett. 296, 77 (1992)

    MathSciNet  Google Scholar 

  20. M. Majumdar, A. -C. Davis, Cosmological creation of D-branes and anti-D-branes. JHEP. 03, 056 (2002)

    MathSciNet  ADS  Google Scholar 

  21. T. W. B. Kibble, Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387 (1976)

    MATH  ADS  Google Scholar 

  22. T. W.B. Kibble, Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980)

    MathSciNet  ADS  Google Scholar 

  23. W. H. Zurek, Cosmological experiments in superfluid helium?. Nature. 317, 505 (1985)

    ADS  Google Scholar 

  24. W. H. Zurek, Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions. Acta Phys. Pol. B. 24, 1301 (1993)

    Google Scholar 

  25. W. H. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177 (1996)

    ADS  Google Scholar 

  26. E. Alvarez, M.A.R. Osorio, Primordial superstrings and the origin of the Universe. Int. J. Theor. Phys. 28 (9), 949 (1989)

    MATH  Google Scholar 

  27. M. Gasperini, Astropart. Phys. 1, 317–339 (1993). arXiv:gr-qc/0105082

    ADS  Google Scholar 

  28. G. Veneziano, CERN-TH/98-43, arXiv:CERN-TH/2000-042

  29. R. Durrer, et al., arXiv:astro-ph/0010408v3

  30. R.H. Brandenberger, arXiv:hep-th/0103156

  31. J. Khoury, et al., arXiv:hep-th/0103239v3

  32. P. Horava, and E. Witten, arXiv:hep-th/9603142

  33. J.M. Hoff da Silva, R. da Rocha, Torsion effects in braneworld scenarios. Phys. Rev. D81, 024021 (2010)

    ADS  Google Scholar 

  34. J.M. Hoff da Silva, R. da Rocha, Braneworld remarks in Riemann–Cartan manifolds. Class. Quant. Grav. 26, 055007 (2009). Erratum: Class.Quant.Grav. 26 (2009) 179801

    MathSciNet  MATH  ADS  Google Scholar 

  35. A. K. Singh, K. P. Pandey, S. Singh, S. Kar, Discrete torsion, de Sitter tunneling vacua and AdS brane: U(1) gauge theory on D4-brane and an effective curvature. JHEP. 05, 033 (2013)

    MATH  ADS  Google Scholar 

  36. A.K. Singh, K.P. Pandey, S. Singh, S. Kar, Emergent Schwarzschild and Reissner-Nordstrom black holes in four dimensions: An effective curvature sourced by a B2-field on a D4-brane. Phys. Rev. 88, 066001 (2013)

    Google Scholar 

  37. A. K. Singh, K. P. Pandey, S. Singh, S. Kar, Discrete torsion, (Anti) de Sitter D4-Brane and Tunneling. Nucl. Phys. 252-252, 241 (2014)

    Google Scholar 

  38. R. Kapoor, S. Kar, D. Singh, Quantum effects in topological and Schwarzschild de Sitter brane: Aspects of torsion on \((D\overline {D})_{4}\)-brane universe. Int. J. Mod. Phys. D24(2), 1550015 (2015)

    MATH  ADS  Google Scholar 

  39. D. Singh, R. Kapoor, S. Kar, Torsion geometries in U(1) gauge theory on D5-brane. Springer Proc. Phys. 174(77), 507–512 (2016). ISBN 978-3-319-25617-7

    Google Scholar 

  40. J. Polchinski, Dirichlet branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724 (1995)

    MathSciNet  MATH  ADS  Google Scholar 

  41. A. Sen, Stable non-BPS states in string theory. JHEP. 9806, 007 (1998)

    MathSciNet  ADS  Google Scholar 

  42. A. Sen, Tachyon condensation on the brane antibrane system. JHEP. 9808, 012 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  43. N. Seiberg, E. Witten, String theory and noncommutative geometry. JHEP. 09, 032 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  44. F. Quevedo, Lectures on string/brane cosmology. Class. Quant. Grav. 19, 5721 (2002)

    MathSciNet  MATH  Google Scholar 

  45. G. Shiu, S. -H. H. Tye, Some aspects of brane inflation. Phys. Lett. 516, 421 (2001)

    MATH  Google Scholar 

  46. M. Mjaumdar, A. -C. Davis, D-brane Anti-brane annihilation in an expanding universe. JHEP. 0312, 012 (2003)

    MathSciNet  ADS  Google Scholar 

  47. T. Padmanabhan, Emergent perspective of gravity and dark energy. Res. Aston. Astrophys. 12, 891 (2012)

    ADS  Google Scholar 

  48. R. -G. Cai, Emergence of space and spacetime dynamics of Friedmann-Robertson-Walker universe. JHEP. 11, 016 (2012)

    MathSciNet  ADS  Google Scholar 

  49. P. Ratra, L. Peebles, Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 37 (12), 3406 (1988)

    ADS  Google Scholar 

  50. R.R. Caldwell, R. Dave, P.J. Steinhardt, Cosmological imprint of an energy component with general equation-of-state. Phys. Rev. Lett. 80(8), 1582–1585 (1998)

    MATH  ADS  Google Scholar 

  51. I. Zlatev, L. Wang, P. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82(5), 896–899 (1999)

    ADS  Google Scholar 

  52. J.P. Ostriker, P. Steinhardt, The quintessential universe. Sci. Am. 284(1), 46–53 (2001)

    ADS  Google Scholar 

  53. S. Chen, Q. Pan, J. Jing, Holographic superconductors in quin- tessence AdS black hole. Class. Quant. Grav. 30, 145001 (2013)

    MATH  ADS  Google Scholar 

  54. W.Y. Huan, R. Jun, Thermodynamic properties of Reissner-Nordström-de Sitter quintessence black holes. Chin. Phys. D. 22, 030402 (2013)

    Google Scholar 

  55. K. P. Pandey, A. K. Singh, S. Singh, R. Kapoor, S. Kar, Quintessence and effective RN de Sitter brane geometries. Eur. Phys. J. 74(11), 3173 (2014)

    ADS  Google Scholar 

  56. K.P. Pandey, A.K. Singh, S. Singh, S. Kar, Quintessence and effective AdS brane geometries. Int. J. Mod. Phys. 30, 1550065 (2015)

    MATH  ADS  Google Scholar 

  57. L.D. Duffy, K. van Bibber, Axions as dark matter particles, Vol. 11 (2009)

  58. P Sikivie, Dark matter axions. Int. J. Mod. Phys. 25(2003), 554–563 (2009)

    MATH  ADS  Google Scholar 

Download references

Acknowledgments

The data used to support the findings of this study are included within the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deobrat Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kar, S. RETRACTED ARTICLE: Emergent D-Instanton as a Source of Dark Energy. Braz J Phys 49, 249–255 (2019). https://doi.org/10.1007/s13538-019-00635-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00635-y

Keywords

Navigation