Skip to main content
Log in

The Effect of Design Parameters of a Production Unit on the Temperature Drop in a Sample During High-Speed Sintering under Pressure

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The computer simulation of the temperature field in the working cell of the production unit during high-speed sintering under pressure of boron carbide powder samples is performed by the finite elements method. Consideration is given to the dependence of the thermophysical properties of a powder sample on the porosity and temperature. In order to minimize the temperature drop in the powder sample, the effect of the working cell design on the temperature drop in the sample is studied by computational modeling. Based on the computational experiments, the working cell design of the unit for high-speed sintering under pressure has been optimized and the heating conditions have been selected such that the sample sintering temperature of 2000°C is reached within 80 to 150 s and the temperature drop in the sample during the holding period for 100–150 s is within 50–30 deg. The laboratory experiments have revealed that the optimized working cell design provides an almost uniform distribution of microhardness in the sintered product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kislyi, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide) Kiev: Naukova Dumka, 1988.

    Google Scholar 

  2. Ostapenko, I.T., Slezov, W., Tarasov, R.V., Kartsev, N.F., and Podtykan, V.P., Densification of boron carbide powder during hot pressing, Powder Metall. Met. Ceram., 1979, vol. 18, no. 5, pp. 312–316.

    Google Scholar 

  3. Yue, X.Y., Zhao, S.M., Lü, P., Chang, Q., Ru, H.Q., Synthesis and properties of hot pressed B4C-TiB2 ceramic composite, Mater. Sci. Eng. A, 2010, vol. 527, pp. 7215–7219.

    Article  Google Scholar 

  4. Huang, S.G., Vanmessel, K., and Van der Biest, O., In situ syntesis and densification of submicrometer-grained B4C/TiB2 Composites by pulsed electric current sintering, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 637–644.

    Article  Google Scholar 

  5. Dudina, D.V., Hulbert, D.M., Jiang, D., Unuvar, C., Cytron, S.J., and Mukherjee A.K. In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering, J. Mater. Sci., 2008, vol. 43, pp. 3569–3576.

    Article  CAS  Google Scholar 

  6. Sairam, K., Sonber, J.K., Murthy, T.S.R.Ch., Paul, B., Nachiket, K., Jothilakshmi, N., Bedse, R.D., and Kain, V., Processing and properties of boron carbide with hafnium diboride addition, Ceramics-Silikáty, 2016, vol. 60, no. 4, pp. 330–337.

    Article  CAS  Google Scholar 

  7. Maistrenko, A.L., Dutka, V.A., Pereyaslov, V.P., and Ivanov, S.A., Mathematical simulation of thermal state of the technological unit elements in fast electrical sintering of diamond-containing composites, Sverkhtverd. Mater., 1999, no. 4, pp. 26–35, 1999 [J. Superhard Mater., 1999, no. 4].

  8. Maistrenko, A.L., Ivanov, S.A., Pereyaslov, V.P., and Voloshin, M.N., Intensive electrical sintering of diamond-containing composite materials, Sverkhtverd. Mater., 2000, no. 5, pp. 39–45 [J. Superhard Mater., 2000, no. 5, pp. 39–45].

  9. Wang, X., Fang, Z., and Sohn, H.Y., Nanocrystalline cemented tungsten carbide sintered by an ultra-high-pressure rapid hot consolidation process, Int. Conf. on Powder Metallurgy & Particulate Mater. Engquist, Denver, US, 2007, pp. 8–10.

  10. Lahiri, D., Singh, V., Rodrigues, G.R., Costa, T.M. H., Gallas, M.R., Bakshi, S.R., Seal, S., and Agarval, A., Ultra-high-pressure consolidation and deformation of tantalum carbide at ambient and high temperatures, Acta Materialia, 2013, vol. 61, pp. 4001–4009.

    Article  CAS  Google Scholar 

  11. Morgunova, N.N., Klypin, B.A., Boyarshinov, V.A., Tarakanov, L.A., and Manegin, Yu.V., Splavy molibdena (Molybdenum Alloys) Moscow: Metallurgiya, 1975.

    Google Scholar 

  12. Spravochnik po tsvetnym metallam (Handbook of Non-Ferrous Metals). https://libmetal.ru/wo/mo.htm

  13. Grigor’ev, V.A. and Zorin, V.I. (Eds.), Teplo- i massoobmen. Teplotekhnicheskii eksperiment. Spravochnik (Heat and Mass Transfer. Heat Engineering Experiment. Handbook), Moscow: Energoizdat, 1982.

    Google Scholar 

  14. Dutka, V.A., Computer modeling of temperature field in sintering carbide composites using induction and radiation heating, J. Superhard Mater., 2013, vol. 35, no. 1, pp. 29–41.

    Article  Google Scholar 

  15. Zavaliangos, A., Zhang, J., Krammer, M., and Groza, J., Temperature evolution during field activated sintering, Mat. Sci. Eng. A, 2004, vol. 379, pp. 218–228.

    Article  Google Scholar 

  16. Wei, X., Giuntini, D., and Maximenko, A.L., Electric contact resistance in spark plasma sintering tooling setup, J. Am. Ceram. Soc., 2015, pp. 1–35.

  17. Rothe, S., Kalabukhov, S., Frage, N., and Hartmann, S., Field assisted sintering technology. Part I: Experiments, constitutive modeling and parameter identification, GAMM-Mitt., 2016, vol. 39, no. 2, pp. 114–148.

    Article  Google Scholar 

  18. Koval’chenko, M.S., Tkachenko, Yu.G., Ochkas, L.F., Yurchenko, D.Z., and Vinokurov, V.B., Densification kinetics of boron carbide in hot pressing, Powder Metall. Met. Ceram., 1987, vol. 26, no. 11, pp. 881–884.

    Article  Google Scholar 

  19. Thevenot, F., A review on boron carbide, Key Eng. Mater., 1991, vol. 56–57, pp. 59–88.

    Article  Google Scholar 

  20. Kuzenkova, M.A., Kislyi, P.S., Grabchuk, B.L., Bodnaruk, N.I., The structure and properties of sintered boron carbide, J. Less-Common Metals, 1979, vol. 61, pp. 217–223.

    Article  Google Scholar 

  21. Khimushkin, F.F., Zharoprochnye stali i splavy (Heat-Resistant Steels and Alloys) Moscow: Metallurgiya, 1969.

    Google Scholar 

  22. Wood, C., Emin, D., and Gray, P.E., Thermal conductivity behaviour of boron carbides, Phys. Rev. B, 1985, vol. 31, issue 10, pp. 6811–6814.

    Article  CAS  Google Scholar 

  23. Samsonov, G.V. and Vinnitskii, I.M., Tugoplavkie soedineniya. Spravochnik (Refractory Compounds. Handbook) Moscow: Metallurgiya, 1976.

    Google Scholar 

  24. Kosolapova, T.Ya. (Ed.), Svoistva, poluchenie i primenenie tugoplavkikh soedinenii. Spravochnoe izdanie (Properties, Production, and Application of Refractory Compounds. Handbook), Moscow: Metallurgiya, 1986.

    Google Scholar 

  25. Liu, J., Zeng, F., Zou, Z., Li, Y., Gu, Y., Zhang, F., and Liang, T., Continuum modeling of B4C densification during Spark Plasma Sintering, J. Mater. Res., 2017, pp. 1–9.

  26. Zhang, J., Numerical simulation of transient thermoelectric phenomena in field activated sintering, Philadelphia: Drexel University, 2004.

    Google Scholar 

  27. Gurvich, L.V., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., Yungman, V.S., Bergman, G.A., Baibuz, V.F., and Iorish, V.S., Termodinamicheskie svoistva individual’kh veshchestv. Sprav. izdanie v 4 tomakh (Thermodynamic Properties of Individual Substances. Handbook in 4 Volumes) Moscow: Nauka, 1981, Volume 3, Book 2.

    Google Scholar 

  28. Thevenot, F., A review on boron carbide, Key Engineering Mater., 1991, vol. 56–57, pp. 59–88.

    Article  Google Scholar 

  29. Nishi, Y., Arita, Y., Matsui, T., and Nagasaki, T., Isotope effects on thermal conductivity of boron carbide, J. Nuclear Sci. Technol., 2002, vol. 39, no. 4, pp. 391–394.

    Article  CAS  Google Scholar 

  30. Gunjishima, I., Akashi, T., and Goto, T., Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method, Mater. Transactions, 2002, vol. 43, no. 4, pp. 712–720.

    Article  CAS  Google Scholar 

  31. Nilsson, O., Sandberg, O., and Böckström, G., Thermal conductivity of B2O3 glass under pressure, Int. J. Thermophysics, 1985, vol. 6, no. 3, pp. 267–273.

    Article  CAS  Google Scholar 

  32. Samsonov, G.V. (Ed.), Borisova, A.L., Zhidkova, T.G., Znatokova, T.N., Kaloshina, Yu.P., Kiseleva, A.F., Kislyi, P.S., Koval’chenko, M.S., Kosolapova, T.Ya., Malakhov, V.Ya., Panasyuk, A.D., Slavuta, V.I., and Tkachenko, N.I., Fiziko-khimicheskie svoistva okislov. Spravochnik (Physical-Chemical Properties of Oxides. Handbook) Moscow: Metallurgiya, 1978.

  33. Metcalfe, A.G., Elsner, N.B., Allen, D.T., Wuchina, E., Opeka, M., and Opila, E., Oxidation of hafnium diboride, In McNallan, M., Opila, E., Maruyama, T., and Narita, T. (Eds.), High Temperature Corrosion and Materials Chemistry. Proc. of the Per Kofstad Memorial Symposium, 2000, vol. 99–38, pp. 489–501.

  34. Bordia, R.K., Kang, S.-J.L., and Olevsky, E., Current understanding and future research directions at the onset of the next century of sintering science and technology, J. Am. Ceram. Soc., 2017, vol. 100, pp. 2314–2352.

    Article  CAS  Google Scholar 

  35. Milsom, B., The effect of CNTs on the sintering behaviour and properties of structural ceramic composites, Doct. Dissertation, Queen Mary, University of London, 2013.

    Google Scholar 

Download references

Funding

This work has been accomplished within the framework of the Research and Development Project No. III-6-16 (0972)—Elaboration of Electric Current Assisted Sintering of Nonconductive Refractory Compounds, at Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine; Project’s State Registration No. 0115U006576, as per Resolution (Record No. 15, dated October 6, 2015) by the Bureau of the Department of Physical and Technical Problems of Materials Science of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dutka.

Additional information

Ukrainian Text © The Author(s), 2019, published in Sverkhtverdye Materialy, 2019, Vol. 41, No. 6, pp. 66–81.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutka, V.A., Maystrenko, A.L. & Kulich, V.G. The Effect of Design Parameters of a Production Unit on the Temperature Drop in a Sample During High-Speed Sintering under Pressure. J. Superhard Mater. 41, 421–433 (2019). https://doi.org/10.3103/S1063457619060066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619060066

Keywords

Navigation