Skip to main content
Log in

Adaptive solution of linear systems of equations based on a posteriori error estimators

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we discuss a new adaptive approach for iterative solution of sparse linear systems arising from partial differential equations (PDEs) with self-adjoint operators. The idea is to use the a posteriori estimated local distribution of the algebraic error in order to steer and guide the solve process in such way that the algebraic error is reduced more efficiently in the consecutive iterations. We first explain the motivation behind the proposed procedure and show that it can be equivalently formulated as constructing a special combination of preconditioner and initial guess for the original system. We present several numerical experiments in order to identify when the adaptive procedure can be of practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Arioli, M., Liesen, J., Miedlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic pde problems. GAMM-Mitteilungen 36(1), 102–129 (2013). https://doi.org/10.1002/gamm.201310006

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  Google Scholar 

  3. Becker, R., Johnson, C., Rannacher, R.: Adaptive error control for multigrid finite element methods. Computing 55(4), 271–288 (1995). https://doi.org/10.1007/BF02238483

    Article  MathSciNet  MATH  Google Scholar 

  4. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (218), 465–476 (1997). https://doi.org/10.1090/S0025-5718-97-00837-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. In: Acta Numerica 1994, pp. 61–143. Cambridge University Press (1994)

  6. Di Pietro, D.A., Vohralík, M., Yousef, S.: Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem. Math. Comp. 84(291), 153–186 (2015). https://doi.org/10.1090/S0025-5718-2014-02854-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996). https://doi.org/10.1137/0733054

    Article  MathSciNet  MATH  Google Scholar 

  8. Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013). https://doi.org/10.1137/120896918

    Article  MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithms 8(2), 241–268 (1994). https://doi.org/10.1007/BF02142693

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010). https://doi.org/10.1137/08073706X

    Article  MathSciNet  MATH  Google Scholar 

  11. Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance domain decomposition methods on massively parallel architectures with freefem++. J. Numer. Math. 20, 287–302 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Keyes, D.E., Gropp, W.D.: A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. SIAM J. Sci. Stat. Comput. 8(2), s166–s202 (1987). https://doi.org/10.1137/0908020

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Z., Saad, Y., Sosonkina, M.: parms: a parallel version of the algebraic recursive multilevel solver. Numerical Linear Algebra with Applications 10(5-6), 485–509 (2003). https://doi.org/10.1002/nla.325

    Article  MathSciNet  MATH  Google Scholar 

  14. Mandel, J.: On block diagonal and schur complement preconditioning. Numer. Math. 58(1), 79–93 (1990)

    Article  MathSciNet  Google Scholar 

  15. Papež, J., Liesen, J., Strakoš, Z.: Distribution of the discretization and algebraic error in numerical solution of partial differential equations. Linear Algebra Appl. 449, 89–114 (2014). https://doi.org/10.1016/j.laa.2014.02.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Papež, J., Rüde, U., Vohralík, M., Wohlmuth, B.: Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. https://hal.inria.fr/hal-01662944. HAL-preprint (2017)

  17. Papež, J., Strakoš, Z., Vohralík, M.: Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math. 138 (3), 681–721 (2018). https://doi.org/10.1007/s00211-017-0915-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2000)

    Google Scholar 

  19. Saad, Y., Sosonkina, M.: Distributed schur complement techniques for general sparse linear systems. SIAM J. Sci. Comput. 21(4), 1337–1356 (1999). https://doi.org/10.1137/S1064827597328996

    Article  MathSciNet  MATH  Google Scholar 

  20. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Teubner-Wiley, Stuttgart (1996)

    MATH  Google Scholar 

  21. Vohralík, M., Yousef, S.: A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows. Comput. Methods Appl. Mech. Eng. 331, 728–760 (2018). https://doi.org/10.1016/j.cma.2017.11.027

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jorti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A posteriori error estimates

Appendix: A posteriori error estimates

In this section, we describe briefly one of the ways how to estimate the local distribution of the algebraic error (6) using flux reconstructions following [8, 10, 17] and references therein. We start by introducing the basic techniques of these a posteriori error estimates, then we detail how to get a sharp computable upper bound of the algebraic error. Note that this section recalls existing techniques and results and we only adapt the a posteriori error estimate of [17] to our chosen model problem.

1.1 Basic a posteriori error estimates

Assuming that a Galerkin solution uh is available, we start by bounding the energy norm of the error \(\underline {u} - \underline {u}_{h}\) represented as

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u} - \underline{u}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} = \sup_{\underline{v} \in V, \lVert{\nabla \underline{v}}\rVert=1} (\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u} - \underline{u}_{h}), \underline{\mathbf{K}}^{\frac12}\nabla \underline{v}). $$
(38)

Note that following (2), then

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u} - \underline{u}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} = \sup_{\underline{v} \in V, \lVert{\nabla \underline{v}}\rVert=1}\{(\underline{f},\underline{v})-(\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}_{h},\underline{\mathbf{K}}^{\frac12}\nabla \underline{v})\}. $$
(39)

The key ingredient of our estimate is a reconstructed flux 𝜃h which is a piecewise polynomial function in the Raviart–Thomas–Nédélec subspace \(\textbf {RTN}(\mathcal {T}_{h})\) of the infinite-dimensional space H(div,Ω) which is reconstructed in order to mimic the continuous flux \({\boldsymbol \theta } := -\underline {\mathbf {K}} \nabla \underline {u}\). In other words, 𝜃h is reconstructed to satisfy

$$ \nabla \cdot {\boldsymbol \theta}_{h} = \underline{f}. $$
(40)

Recall from Section 2 that \(\underline {f}\) is assumed to be piecewise constant with respect to the mesh \(\mathcal {T}_{h}\). Now, we use the Green and the Cauchy–Schwarz inequality together with (39) and we follow [17, Section 4.1], to write

$$ \begin{array}{@{}rcl@{}} \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u} - \underline{u}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} &=& \underset{\nabla \cdot {\boldsymbol \sigma} = \underline{f}}{\underset{{\boldsymbol \sigma} \in \textbf{H}(\text{div},{\Omega})}{\inf}} \underset{{\lVert{\nabla \underline{v}}\rVert=1}}{\underset{\underline{v} \in V}{\sup}}\{(\underline{f}-\nabla \cdot {\boldsymbol\sigma} ,\underline{v}) \\ & & \qquad \qquad \qquad -(\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}_{h} + \underline{\mathbf{K}}^{-\frac12} {\boldsymbol \sigma},\underline{\mathbf{K}}^{\frac12}\nabla \underline{v})\} \\ &=& \underset{\nabla \cdot {\boldsymbol \sigma} = \underline{f}}{\underset{{\boldsymbol \sigma} \in \textbf{H}(\text{div},{\Omega})}{\inf}} \underset{\lVert{\nabla \underline{v}}\rVert=1}{\underset{\underline{v} \in V}{\sup}} \{-(\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}_{h} + \underline{\mathbf{K}}^{-\frac12} {\boldsymbol \sigma},\underline{\mathbf{K}}^{\frac12}\nabla \underline{v})\} \\ &=& \underset{\nabla \cdot {\boldsymbol \sigma} = \underline{f}}{\underset{{\boldsymbol \sigma} \in \textbf{H}(\text{div},{\Omega})}{\inf}} \lVert{\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}_{h} + \underline{\mathbf{K}}^{-\frac12} {\boldsymbol \sigma}}\rVert_{\mathrm{L}^{2}({\Omega})} \\ &\leq& \lVert{\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}_{h} + \underline{\mathbf{K}}^{-\frac12} {\boldsymbol \theta}_{h}}\rVert_{\mathrm{L}^{2}({\Omega})}. \end{array} $$

This gives a guaranteed upper bound on the discretization error. Note that the obtained estimate relies only on the weak formulation and the reconstructed flux 𝜃h. Finally, it is important to mention that the needed reconstructed flux 𝜃h can be easily reconstructed for various discretization schemes like finite elements, nonconforming finite elements, discontinuous Galerkin, finite volumes, and mixed finite elements (see [8] for more details).

1.2 Upper bound on the algebraic error

In this section, we suppose that we use an iterative solver to obtain an approximate solution \(\underline {u}^{(i)}_{h}\) of (3) after running i iterations. In order to estimate the algebraic error we first introduce a representation of the algebraic residual vector which will be a function \(\underline {s}_{h}^{(i)}\in \mathrm {L}^{2}({\Omega })\) satisfying

$$ (\underline{s}_{h}^{(i)},\varphi_{j}) = \mathbf{r}^{(i)}_{j}, \qquad 1\leq j\leq n. $$
(41)

Details about the reconstruction of \(\underline {s}_{h}^{(i)}\) with two different examples can be found in [17, Section 5.1]. Note that from (41) and the definition of the algebraic residual vector r(i) one can write

$$ (\underline{s}_{h}^{(i)},\varphi_{j}) = (\underline{f},\varphi_{j}) -(\underline{\mathbf{K}}^{\frac12} \nabla \underline{u}^{(i)}_{h}, \underline{\mathbf{K}}^{\frac12} \nabla \varphi_{j}), \qquad 1\leq j\leq n. $$
(42)

Consequently,

$$ (\underline{s}_{h}^{(i)},\underline{v}_{h}) = (\underline{f},\underline{v}_{h}) -(\underline{\mathbf{K}}^{\frac12} \nabla \underline{u}^{(i)}_{h},\underline{\mathbf{K}}^{\frac12} \nabla \underline{v}_{h}). $$
(43)

Using (3), then (43) gives

$$ (\underline{s}_{h}^{(i)},\underline{v}_{h}) = (\underline{\mathbf{K}}^{\frac12} (\nabla \underline{u}_{h} - \nabla \underline{u}^{(i)}_{h}), \underline{\mathbf{K}}^{\frac12}\nabla \underline{v}_{h}). $$
(44)

This representation of the algebraic residual vector plays a key role in the estimation of the algebraic error. Actually, by applying the Cauchy–Schwarz inequality together with the Friedrichs inequality on (44), one gets

$$ \begin{array}{@{}rcl@{}} (\underline{\mathbf{K}}^{\frac12} (\nabla \underline{u}_{h} - \nabla \underline{u}^{(i)}_{h}) ,\underline{\mathbf{K}}^{\frac12}\nabla \underline{v}_{h}) &=& (\underline{s}_{h}^{(i)},\underline{v}_{h}) \\ &\leq& \|\underline{s}_{h}^{(i)}\|_{\mathrm{L}^{2}({\Omega})} \lVert{\underline{v}_{h}}\rVert_{\mathrm{L}^{2}({\Omega})}\\ &\leq& \|\underline{s}_{h}^{(i)}\|_{\mathrm{L}^{2}({\Omega})} \left( C_{\mathrm{F}} h_{\Omega} \lVert{\nabla\underline{v}_{h}}\rVert_{\mathrm{L}^{2}({\Omega})}\right)\\ &\leq& \|\underline{s}_{h}^{(i)}\|_{\mathrm{L}^{2}({\Omega})} \left( C_{\mathrm{F}} h_{\Omega}{\lambda}^{-\frac12}_{\underline{\mathbf{K}}} \lVert{\underline{\mathbf{K}}^{\frac12}\nabla\underline{v}_{h}}\rVert_{\mathrm{L}^{2}({\Omega})}\right), \end{array} $$

where 0 < CF ≤ 1 is the constant from the Friedrichs inequality, hΩ the diameter of the domain Ω, and \({\lambda }_{\underline {\mathbf {K}}}\) the smallest eigenvalue of \(\underline {\mathbf {K}}\). First computable upper bound is then obtained for the algebraic error as

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u}_{h} - \underline{u}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} \leq C_{\mathrm{F}} h_{\Omega}{\lambda}^{-\frac12}_{\underline{\mathbf{K}}} \|\underline{s}_{h}^{(i)}\|_{\mathrm{L}^{2}({\Omega})}. $$
(45)

However, this upper bound yields often a significant overestimation (see, e.g., [17, Sections 3.1 and 4.2]). An improvement of the upper bound (45) can be obtained by using flux reconstruction techniques and additional algebraic iterations. Following Section 6 and [17, Section 5.3], we consider a reconstructed flux \({\boldsymbol \theta }^{(i)}_{h} \in \textbf {RTN}(\mathcal {T}_{h})\) satisfying \(\nabla \cdot {\boldsymbol \theta }^{(i)}_{h} = \underline {f} - \underline {s}_{h}^{(i)}\). Then, after ν > 0 additional iterations we similarly construct from the algebraic residual vector r(i+ν) a representation \(\underline {s}_{h}^{(i+\nu )}\), and another reconstructed flux \({\boldsymbol \theta }^{(i+\nu )}_{h} \in \textbf {RTN}(\mathcal {T}_{h})\) satisfying \(\nabla \cdot {\boldsymbol \theta }^{(i+\nu )}_{h} = \underline {f} - \underline {s}_{h}^{(i+\nu )}\). With these different reconstructions, we have

$$ \underline{s}_{h}^{(i)} = \underline{s}_{h}^{(i+\nu)} + \nabla \cdot {\boldsymbol \theta}^{(i+\nu)}_{h} - \nabla \cdot {\boldsymbol \theta}^{(i)}_{h}, $$

and therefore (44) gives

$$ (\underline{\mathbf{K}}^{\frac12} (\nabla \underline{u}_{h} - \nabla \underline{u}^{(i)}_{h}) ,\underline{\mathbf{K}}^{\frac12}\nabla \underline{v}_{h}) = (\underline{\mathbf{K}}^{-\frac12} ({\boldsymbol \theta}^{(i+\nu)}_{h} - {\boldsymbol \theta}^{(i)}_{h}), \underline{\mathbf{K}}^{\frac12} \nabla\underline{v}_{h} ) +(\underline{s}_{h}^{(i+\nu)},\underline{v}_{h}) . $$

Consequently,

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u}_{h} - \underline{u}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} \leq \lVert{\underline{\mathbf{K}}^{- \frac12} ({\boldsymbol \theta}^{(i+\nu)}_{h} - {\boldsymbol \theta}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} + C_{\mathrm{F}} h_{\Omega}{\lambda}^{-\frac12}_{\underline{\mathbf{K}}} \lVert{\underline{s}_{h}^{(i+\nu)}}\rVert_{\mathrm{L}^{2}({\Omega})} $$
(46)

The idea of using additional algebraic iterations is very useful in practice [9]. In fact, for a sufficiently large value of ν, one can assume that there exists γ > 0 such that

$$ C_{\mathrm{F}} h_{\Omega}{\lambda}^{-\frac12}_{\underline{\mathbf{K}}} \lVert{\underline{s}_{h}^{(i+\nu)}}\rVert_{\mathrm{L}^{2}({\Omega})} \leq \gamma \lVert{\underline{\mathbf{K}}^{- \frac12} ({\boldsymbol \theta}^{(i+\nu)}_{h} - {\boldsymbol \theta}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})}, $$

so that

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u}_{h} - \underline{u}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} \leq (1+\gamma)\lVert{\underline{\mathbf{K}}^{- \frac12} ({\boldsymbol \theta}^{(i+\nu)}_{h} - {\boldsymbol \theta}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})}, $$

which gives an upper bound easily computed and cheaply evaluated in practice even for complex problems (see [21] for details).

Remark 5 (Local indicators for the algebraic error)

In order to estimate the local distribution of the algebraic error (6) using flux reconstructions, one can use the local indicators \(\eta ^{(i)}_{\text {alg},K} \hspace {-0.1cm} := \hspace {-0.1cm} \lVert {\underline {\mathbf {K}}^{- \frac 12} ({\boldsymbol \theta }^{(i+\nu )}_{h} \hspace {-0.1cm} - {\boldsymbol \theta }^{(i)}_{h})}\rVert _{\mathrm {L}^{2}(K)} + C_{\mathrm {F}} h_{\Omega }{\lambda }^{-\frac 12}_{\underline {\mathbf {K}}} \lVert {\underline {s}_{h}^{(i+\nu )}}\rVert _{\mathrm {L}^{2}(K)} \) . Relying on the previous discussion, in practice with a sufficiently large ν one can use the local algebraic indicator \(\lVert {\underline {\mathbf {K}}^{- \frac 12} ({\boldsymbol \theta }^{(i+\nu )}_{h} - {\boldsymbol \theta }^{(i)}_{h})}\rVert _{\mathrm {L}^{2}(K)}\) which can be the ingredient of our adaptive procedure.

Remark 6 (A posteriori error estimates for the total error)

A computable upper bound can be obtained on the energy norm of the total error \(\underline {u} - \underline {u}^{(i)}_{h}\) following the same ideas of Section 6 and Section 6:

$$ \lVert{\underline{\mathbf{K}}^{\frac12}\nabla(\underline{u} - \underline{u}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} \leq \eta^{(i)}_{\text{dis}} + \eta^{(i)}_{\text{alg}} $$

with

$$ \eta^{(i)}_{\text{dis}} := \lVert{\underline{\mathbf{K}}^{\frac12}\nabla \underline{u}^{(i)}_{h} + \underline{\mathbf{K}}^{-\frac12} {\boldsymbol \theta}^{(i)}_{h}}\rVert_{\mathrm{L}^{2}({\Omega})} $$

and

$$ \eta^{(i)}_{\text{alg}} := \lVert{\underline{\mathbf{K}}^{- \frac12} ({\boldsymbol \theta}^{(i+\nu)}_{h} - {\boldsymbol \theta}^{(i)}_{h})}\rVert_{\mathrm{L}^{2}({\Omega})} + C_{\mathrm{F}} h_{\Omega}{\lambda}^{-\frac12}_{\underline{\mathbf{K}}} \lVert{\underline{s}_{h}^{(i+\nu)}}\rVert_{\mathrm{L}^{2}({\Omega})}, $$

see [17] for the full demonstration.

Remark 7 (A posteriori error estimates in the multilevel setting)

There is also another way how to construct upper bounds for the total and algebraic errors without the need of running additional iterations of the algebraic solver. The construction assumes the existence of the hierarchy of meshes, with a global solve on the coarsest mesh (see [16] for more details).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anciaux-Sedrakian, A., Grigori, L., Jorti, Z. et al. Adaptive solution of linear systems of equations based on a posteriori error estimators. Numer Algor 84, 331–364 (2020). https://doi.org/10.1007/s11075-019-00757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00757-z

Keywords

Mathematics Subject Classification (2010)

Navigation