Skip to main content
Log in

Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs)

Methods

Radiomics features (n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set (n = 28).

Results

The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model.

Conclusion

Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role.

Key Points

• The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation.

• The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading.

• Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CBV:

Cerebral blood volume

CE:

Contrast-enhanced

CNS:

Central nervous system

DSC:

Dynamic susceptibility contrast

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid-attenuated inversion recovery

IDH:

Isocitrate dehydrogenase

LGG:

Lower grade glioma

T1WI:

T1-weighted imaging

WHO:

2016 World Health Organization

References

  1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  Google Scholar 

  2. Weller M, van den Bent M, Tonn JC (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329

  3. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  Google Scholar 

  4. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

    Article  Google Scholar 

  5. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  Google Scholar 

  6. Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467

    Article  Google Scholar 

  7. Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436

  8. Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870

    Article  CAS  Google Scholar 

  9. Qin J-B, Liu Z, Zhang H et al (2017) Grading of gliomas by using radiomic features on multiple magnetic resonance imaging (MRI) sequences. Med Sci Monit 23:2168–2178

  10. Jain R, Lui YW (2018) How far are we from using radiomics assessment of gliomas in clinical practice? Radiology 289:807–808

    Article  Google Scholar 

  11. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

  12. Barajas RF Jr, Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14:942–954

  13. Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  CAS  Google Scholar 

  14. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  CAS  Google Scholar 

  15. Hilario A, Ramos A, Perez-Nuñez A et al (2012) The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. AJNR Am J Neuroradiol 33:701–707

  16. Caseiras GB, Chheang S, Babb J et al (2010) Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 73:215–220

    Article  Google Scholar 

  17. Crawford FW, Khayal IS, McGue C et al (2008) Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neurooncol 91:337

    Article  Google Scholar 

  18. Saraswathy S, Crawford FW, Lamborn KR et al (2009) Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 91:69–81

    Article  Google Scholar 

  19. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  20. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

  21. Liu T, Cheng G, Kang X et al (2018) Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging. Neuroradiology 60:693–702

    Article  Google Scholar 

  22. Villanueva-Meyer JE, Wood MD, Choi BS et al (2018) MRI features and IDH mutational status of grade ii diffuse gliomas: impact on diagnosis and prognosis. AJR Am J Roentgenol 210:621–628

    Article  Google Scholar 

  23. Kickingereder P, Sahm F, Radbruch A et al (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:16238–16238

    Article  CAS  Google Scholar 

  24. Ellingson BM (2015) Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506

    Article  Google Scholar 

  25. Moons KG, Altman DG, Reitsma JB et al (2015) Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162:W1–W73

    Article  Google Scholar 

  26. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044

    Article  Google Scholar 

  27. Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19

  28. Kickingereder P, Burth S, Wick A et al (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889

    Article  Google Scholar 

  29. Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol. https://doi.org/10.1093/neuonc/noy021

  30. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  Google Scholar 

  31. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  32. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844

    Article  Google Scholar 

  33. Tian Q, Yan LF, Zhang X et al (2018) Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging 48:1518–1528

  34. Kim H, Kim S (2007) A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the grading of gliomas. AJNR Am J Neuroradiol 28:1693–1699

  35. van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

    Article  Google Scholar 

  36. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343

    Article  CAS  Google Scholar 

  37. Shofty B, Artzi M, Ben Bashat D et al (2018) MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg 13:563–571

    Article  Google Scholar 

  38. Jakola AS, Zhang YH, Skjulsvik AJ et al (2018) Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg 164:114–120

    Article  Google Scholar 

  39. Zhang X, Tian Q, Wang L et al (2018) Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting idh and TP53 mutations based on multimodal MRI. J Magn Reson Imaging 48:916–926

    Article  Google Scholar 

  40. Broen MPG, Smits M, Wijnenga MMJ et al (2018) The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol 20:1393–1399

    Article  CAS  Google Scholar 

  41. Patel SH, Poisson LM, Brat DJ et al (2017) T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA Project. Clin Cancer Res 23:6078–6085

    Article  CAS  Google Scholar 

  42. Yang Y, Yan LF, Zhang X et al (2019) Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J Magn Reson Imaging 49:1263–1274

    Article  Google Scholar 

  43. Park YW, Han K, Ahn SS et al (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas. AJNR Am J Neuroradiol 39:693–698

    Article  CAS  Google Scholar 

  44. Emblem KE, Scheie D, Due-Tonnessen P et al (2008) Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol 29:1664–1670

    Article  CAS  Google Scholar 

  45. Spampinato MV, Smith JK, Kwock L et al (2007) Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol 188:204–212

  46. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  Google Scholar 

  47. Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 17:1188–1198

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (grant number NRF-2017R1A2A2A05001217 and grant number NRF-2017R1C1B2007258)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Eun Park.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Jeong Hoon Kim.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise (Seo Young Park, 8 years of experience).

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• cross-sectional study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jung, S.Y., Park, J.E. et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30, 2142–2151 (2020). https://doi.org/10.1007/s00330-019-06548-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06548-3

Keywords

Navigation