Skip to main content

Advertisement

Log in

Short-Term Response of Chlorophyll-a Concentration to Change in Sea Surface Wind Field over Mesoscale Eddy

  • Special Issue: Climate Change and Anthropogenic Change around Korean Peninsula
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Short-term biological responses to sea surface wind field over mesoscale eddies were investigated using hourly ocean color chlorophyll-a (chl-a) concentration data from the Geostationary Ocean Color Imager (GOCI), scatterometer wind data, and satellite sea surface temperature (SST) data. Four warm eddies were identified from SST fronts, by subjectively fitting ellipses to selected points, and anticyclonically rotating current vectors were estimated from sequential chl-a images. Scatterometer data confirmed wind speed strengthening by approximately 30% over anticyclonic eddies, regardless of wind direction, caused by stability changes in the marine atmospheric boundary layer. The modified wind speed field produced a characteristic pattern of wind stress curl and Ekman pumping (EKP) over the eddies, showing positive and negative values on the left and right sides of the upwind direction, respectively. The EKP field was divided into three components: eddy current-induced, relative vorticity gradient-induced, and crosswind SST-induced terms. Short-term changes in the chl-a concentration showed a positive relation with EKP variations over most eddies. SST-induced EKP played a significant role in the eddies for 76% of the total variations, which is much higher than that in other oceans. This study emphasizes the significant effect of SST distribution and the biological responses to changes in an EKP field in relation to air–sea interactions and feedback processes in the East Sea (Sea of Japan).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn, J.H., Y.J. Park, J.H. Ryu, and B. Lee. 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI). Ocean Science Journal 47 (3): 247–259.

    Article  Google Scholar 

  • Ahn, J.H., Y.J. Park, W. Kim, B. Lee, and I.S. Oh. 2015. Vicarious calibration of the Geostationary Ocean Color Imager. Optics Express 23 (18): 23236–23258.

    Article  CAS  Google Scholar 

  • Ahn, J.H., Y.J. Park, W. Kim, and B. Lee. 2016. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Optics Express 24: 29659–29669.

    Article  CAS  Google Scholar 

  • Anderson, R.J. 1993. A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. Journal of Physical Oceanography 23: 2153–2161.

    Article  Google Scholar 

  • Behrenfeld, M.J. 2010. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91: 977–989. https://doi.org/10.1890/09-1207.1.

    Article  Google Scholar 

  • Belkin, I., and P.C. Cornillon. 2003. SST fronts of the Pacific coastal and marginal seas. Pacific Oceanography 1 (2): 90–113.

    Google Scholar 

  • Byrne, D., M. Munnich, I. Frenger, and N. Gruber. 2016. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nature Communications 7 (1): 11867–11868. https://doi.org/10.1038/ncomms11867.

    Article  CAS  Google Scholar 

  • Chaigneau, A., G. Eldin, and B. Dewitte. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography 83 (1–4): 117–123. https://doi.org/10.1016/j.pocean.2009.07.012.

    Article  Google Scholar 

  • Chelton, D., and M. Freilich. 2005. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Monthly Weather Review 133 (2): 409–429.

    Article  Google Scholar 

  • Chelton, D.B., and S.-P. Xie. 2010. Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography 23: 52–69.

    Article  Google Scholar 

  • Chelton, D.B., M.G. Schlax, and R.M. Samelson. 2011a. Global observations of nonlinear mesoscale eddies. Progress in Oceanography 91 (2): 167–216.

    Article  Google Scholar 

  • Chelton, D.B., P. Gaube, M.G. Schlax, J.J. Early, and R.M. Samelson. 2011b. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334 (6054): 328–332. https://doi.org/10.1126/science.1208897.

    Article  CAS  Google Scholar 

  • Cornillon, P.C., and K.-A. Park. 2001. Warm core ring velocities inferred from NSCAT data. Geophysical Research Letters 28: 575–578.

    Article  Google Scholar 

  • Dewar, W., and G. Flierl. 1987. Some effects of the wind on rings. Journal of Physical Oceanography 17: 1653–1667. https://doi.org/10.1175/1520-0485(1987)017,1653:SEOTWO.2.0.CO;2.

    Article  Google Scholar 

  • Dufois, F., N.J. Hardman-Mountford, J. Greenwood, A.J. Richardson, M. Feng, and R.J. Matear. 2016. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Science Advances 2 (5): e1600282.

    Article  Google Scholar 

  • Dufois, F., N.J. Hardman-Mountford, M. Fernandes, B. Wojtasiewicz, D. Shenoy, D. Slawinski, M. Gauns, J. Greenwood, and R. Toresen. 2017. Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies. Geophysical Research Letters 44: 3255–3264. https://doi.org/10.1002/2016GL072371.

    Article  CAS  Google Scholar 

  • Emery, W.J., A.C. Thomas, M.J. Collins, W.R. Crawford, and D.L. Mackas. 1986. An objective method for computing advective surface velocities from sequential infrared satellite images. Journal of Geophysical Research 91: 12865–12878. https://doi.org/10.1029/JC091iC11p12865.

    Article  Google Scholar 

  • Falkowski, P.G., D. Ziemann, Z. Kolber, and P.K. Bienfang. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature 352: 55–58.

    Article  Google Scholar 

  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience 6 (8): 608–612. https://doi.org/10.1038/ngeo1863.

    Article  CAS  Google Scholar 

  • Fu, L.-L., D.B. Chelton, P.-Y. Le Traon, and R. Morrow. 2010. Eddy dynamics from satellite altimetry. Oceanography 23 (4): 14–25.

    Article  Google Scholar 

  • Gaube, P., D.B. Chelton, P.G. Strutton, and M.J. Behrenfeld. 2013. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. Journal of Geophysical Research, Oceans 118: 6349–6370. https://doi.org/10.1002/2013JC009027.

    Article  CAS  Google Scholar 

  • Gaube, P., D.B. Chelton, R.M. Samelson, M.G. Schlax, and L.W. O’Neill. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. Journal of Physical Oceanography 45 (1): 104–132.

    Article  Google Scholar 

  • Grachev, Y., M. Koshlyakov, T. Tikhomirova, and V. Yenikeyev. 1979. Synoptic eddy field in the POLYMODE area. POLYMODE News: 69.

  • He, Q., H. Zhan, S. Cai, and G. Zha. 2016. On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific: the role of eddy-Ekman pumping. Progress in Oceanography 141: 202–211.

    Article  Google Scholar 

  • Huh, O.K. 1982. Spring season flow of the Tsushima Current and its separation from the Kuroshio: Satellite evidence. Journal of Geophysical Research 37 (C12): 9687–9693.

    Article  Google Scholar 

  • Hunt, C.D., D.G. Borkman, P.S. Libby, R. Lacouture, J.T. Turner, and M.J. Mickelson. 2010. Phytoplankton patterns in Massachusetts Bay—1992–2007. Estuaries and Coasts 33 (2): 448–470. https://doi.org/10.1007/s12237-008-9125-9.

    Article  CAS  Google Scholar 

  • Ichiye, T. 1984. Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. In Ocean hydrodynamics of the Japan and East China Seas, Vol. 39: Elsevier Oceanography Series, ed. T. Ichiye, 15–54. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Jose, Y.S., O. Aumont, E. Machu, P. Penven, C.L. Moloney, and O. Maury. 2014. Influence of mesoscale eddies on biological production in the Mozambique Channel: Several contrasted examples from a coupled ocean-biogeochemistry model. Deep Sea Research Part II 100: 79–93. https://doi.org/10.1016/j.dsr2.2013.10.018.

    Article  CAS  Google Scholar 

  • Kim, K., K.R. Kim, D.H. Min, Y. Volkov, J.H. Yoon, and M. Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophysical Research Letters 28 (17): 3293–3296.

    Article  Google Scholar 

  • Klein, P., and G. Lapeyre. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science 1: 351–375.

    Article  Google Scholar 

  • Kwak, J.H., S.H. Lee, H.J. Park, E.J. Choy, H.D. Jeong, K.R. Kim, and C.K. Kang. 2013. Monthly measured primary and new productivities in the Ulleung Basin as a biological “hot spot” in the East/Japan Sea. Biogeosciences 10: 4405–4417. https://doi.org/10.5194/bg-10-4405-2013.

    Article  Google Scholar 

  • Kwak, J.H., E. Han, S.H. Lee, H.J. Park, K.R. Kim, and C.K. Kang. 2017. A consistent structure of phytoplankton communities across the warm–cold regions of the water mass on a meridional transect in the East/Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography 143: 36–44. https://doi.org/10.1016/j.dsr2.2017.07.001.

    Article  CAS  Google Scholar 

  • Le Bouteiller, A., and A. Herbland. 1982. Diel variation of chlorophyll a as evidence from a 13-day station in the equatorial Atlantic Ocean. Oceanologica Acta 5 (4): 433–441.

    Google Scholar 

  • Legeckis, R. 1978. A survey of worldwide sea surface temperature fronts detected by environmental satellites. Journal of Geophysical Research 83 (C9): 4501–4522.

    Article  Google Scholar 

  • Lewis, J.P. 1995. Fast normalized cross-correlation. Vision Interface 10 (1): 120–123.

    Google Scholar 

  • Lin, J., W. Cao, G. Wang, and S. Hu. 2014. Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea. Marine Pollution Bulletin 83 (1): 190–197. https://doi.org/10.1016/j.marpolbul.2014.03.052.

    Article  CAS  Google Scholar 

  • Mahadevan, A., L.N. Thomas, and A. Tandon. 2008. Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms”. Science 320 (5875): 448–448.

    Article  CAS  Google Scholar 

  • Mann, K.H., and J.R.N. Lazier. 2013. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. Wiley.

  • Martin, A.P., and K.J. Richards. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research II 48 (4-5): 757–773. https://doi.org/10.1016/S0967-0645(00)00096-5.

    Article  CAS  Google Scholar 

  • McAllister, C.D. 1963. Measurements of diurnal variation in productivity at ocean station “P”. Limnology and Oceanography 8: 289–292.

    Article  Google Scholar 

  • McGillicuddy, D.J., and A.R. Robinson. 1997. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers 44 (8): 1427–1450.

    Article  CAS  Google Scholar 

  • McGillicuddy, D.J., A.R. Robinson, D.A. Siegel, H.W. Jannasch, R. Johnson, T.D. Dickey, J. McNeil, A.F. Michaels, and A.H. Knap. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394 (6690): 263.

    Article  CAS  Google Scholar 

  • McGillicuddy, D.J., L.A. Anderson, N.R. Bates, T. Bibby, K.O. Buesseler, C.A. Carlson, C.S. Davis, C. Ewart, P.G. Falkowski, S.A. Goldthwait, and D.A. Hansell. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316 (5827): 1021–1026.

    Article  CAS  Google Scholar 

  • McGillicuddy, D.J., J.R. Ledwell, and L.A. Anderson. 2008. Response to comments on “Eddy/Wind interactions stimulate extraordinary midocean plankton bloom”. Science 320 (5875): 488. https://doi.org/10.1126/science.1148974.

    Article  CAS  Google Scholar 

  • Mercado, J.M., T. Ramírez, D. Cortés, M. Sebastián, A. Reul, and B. Bautista. 2006. Diurnal changes in the bio-optical properties of the phytoplankton in the Alborán Sea (Mediterranean Sea). Estuarine, Coastal and Shelf Science 69 (3): 459–470.

    Article  Google Scholar 

  • Miller, C.B. 2004. Biological Oceanography. Blackwell.

  • Moriyasu, S. 1972. The Tsushima Current. In Kuroshio: Its physical aspects, ed. H. Stommel and K. Yoshida, 353–369. Tokyo: Univ. of Tokyo Press.

    Google Scholar 

  • Ninnis, R.M., W.J. Emery, and M.J. Collins. 1986. Automated extraction of pack ice motion from advanced very high resolution radiometer imagery. Journal of Geophysical Research 91: 10725–10734. https://doi.org/10.1029/JC091iC09p10725.

    Article  Google Scholar 

  • O’Neill, L.W. 2012. Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. Journal of Climate 25: 1544–1569. https://doi.org/10.1175/JCLI-D-11-00121.1.

    Article  Google Scholar 

  • O’Neill, L.W., D.B. Chelton, S.K. Esbensen, and F.J. Wentz. 2005. High resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. Journal of Climate 18: 2706–2723. https://doi.org/10.1175/JCLI3415.1.

    Article  Google Scholar 

  • O’Neill, L.W., D.B. Chelton, and S.K. Esbensen. 2010. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. Journal of Climate 23 (2): 255–281.

    Article  Google Scholar 

  • O’Neill, L.W., D.B. Chelton, and S.K. Esbensen. 2012. Covariability of surface wind and stress responses to sea surface temperature fronts. Journal of Climate 25 (17): 5916–5942.

    Article  Google Scholar 

  • Oschlies, A. 2002. Nutrient supply to the surface waters of the North Atlantic: a model study. Journal of Geophysical Research: Oceans 107 (C5): 3046. https://doi.org/10.1029/2000JC000275.

    Article  Google Scholar 

  • Park, K.-A., and P.C. Cornillon. 2002. Stability-induced modification of sea surface winds over Gulf Stream rings. Geophysical Research Letters 29: 2211. https://doi.org/10.1029/2001GL014236.

    Article  Google Scholar 

  • Park, K.-A., J.Y. Chung, K. Kim, B.-H. Choi, and L.D. Kyu. 1999. Sea surface temperature retrievals optimized to the East Sea (Sea of Japan) using NOAA/AVHRR data. Marine Technology Society Journal 33 (1): 23–35. https://doi.org/10.4031/MTSJ.33.1.4.

    Article  Google Scholar 

  • Park, K.-A., J.Y. Chung, and K. Kim. 2004. Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophysical Research Letters 31 (7): L07304. https://doi.org/10.1029/2004GL019424.

    Article  Google Scholar 

  • Park, K.-A., J.Y. Chung, K. Kim, and P.C. Cornillon. 2005. Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea. Geophysical Research Letters 32: L05610. https://doi.org/10.1029/2004GL022197.

    Article  Google Scholar 

  • Park, K.-A., P.C. Cornillon, and D.L. Codiga. 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research 111: C03021. https://doi.org/10.1029/2005JC003016.

    Article  Google Scholar 

  • Park, K.-A., D.S. Ullman, K. Kim, J.Y. Chung, and K.R. Kim. 2007. Spatial and temporal variability of satellite-observed subpolar front in the East/Japan Sea. Deep Sea Research Part I: Oceanographic Research Papers 54 (4): 453–470.

    Article  Google Scholar 

  • Park, K.-A., H.-J. Woo, and J.-H. Ryu. 2012. Spatial scales of mesoscale eddies from GOCI chlorophyll-a concentration images in the East/Japan Sea. Ocean Science Journal 47 (3): 347–358. https://doi.org/10.1007/s12601-012-0033-3.

    Article  Google Scholar 

  • Park, K.-A., J.-E. Park, B.J. Choi, D.S. Byun, and E.I. Lee. 2013. An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Journal of Korean Society of Oceanography 18 (4): 234–265.

    Google Scholar 

  • Park, J.-E., K.-A. Park, D.S. Ullman, P.C. Cornillon, and Y.-J. Park. 2016. Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data. Remote Sensing Letters 7 (12): 1131–1140. https://doi.org/10.1080/2150704X.2016.1219423.

    Article  Google Scholar 

  • Park, K.-A., J.-E. Park, B.J. Choi, S.H. Lee, H.-R. Shin, S.-R. Lee, D.-S. Byun, B.S. Kang, and E. Lee. 2017. Schematic maps of ocean currents in the Yellow Sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements. Journal of Korean Society of Oceanography 22 (4): 151–170.

    Google Scholar 

  • Reynolds, C.S. 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Robinson, A.R. 1983. Overview and summary of eddy science. In Eddies in marine science, ed. A.R. Robinson, 3–15. New York: SpringerVerlag.

  • Roemmich, D., and J. Gilson. 2001. Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? Journal of Physical Oceanography 31 (3): 675–687.

    Article  Google Scholar 

  • Ross, D., J. Overland, W. Plerson, V. Cardone, R. McPherson, and T. Yu. 1985. Oceanic surface winds. Advances in Geophysics 27: 101–140.

    Article  Google Scholar 

  • Siegel, D.A., D.B. Court, D.W. Menzies, P. Peterson, S. Maritorena, and N.B. Nelson. 2008. Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea. Deep Sea Research Part II 55 (10–13): 1218–1230. https://doi.org/10.1016/j.dsr2.2008.01.012.

    Article  Google Scholar 

  • Siegel, D.A., P. Peterson, D.J. McGillicuddy, S. Maritorena, and N.B. Nelson. 2011. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophysical Research Letters 38: L13608. https://doi.org/10.1029/2011GL047660.

    Article  Google Scholar 

  • Small, R.J., S.P. de Szoeke, S.P. Xie, L. O’Neill, H. Seo, Q. Song, P. Cornillon, M. Spall, and S. Minobe. 2008. Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans 45: 274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    Article  Google Scholar 

  • Sommer, U. 1985. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnology and Oceanography 30 (2): 335–346.

    Article  CAS  Google Scholar 

  • Stern, M. 1965. Interaction of a uniform wind stress with a geostrophic vortex. Deep Sea Research and Oceanographic Abstracts 12 (3): 355–367. https://doi.org/10.1016/0011-7471(65)90007-0.

    Article  Google Scholar 

  • Thomson, R.E., and W.J. Emery. 2014. Data analysis methods in physical oceanography. Amsterdam: Elsevier.

    Google Scholar 

  • Venkataraman, G.S. 1969. The cultivation of algae. Indian Council of Agricultural Research, Bulletin of the Central Marine Fisheries Research Institute.

  • Wood, E.J.F., and E.F. Corcoran. 1966. Diurnal variation in phytoplankton. Bulletin of Marine Science 16: 383–403.

    Google Scholar 

  • Yashayaev, I.M., and I.I. Zveryaev. 2001. Climate of the seasonal cycle in the North Pacific and the North Atlantic oceans. International Journal of Climatology 21: 401–417.

    Article  Google Scholar 

  • Zeitzschel, B. 1978. Oceanographic factors influencing the distribution of plankton in space and time. Micropaleontology 24 (2): 139–159.

    Article  Google Scholar 

Download references

Funding

This research was a part of the projects titled ‘Long-term change of structure and function in marine ecosystems of Korea’ and ‘Technology development for practical applications of multi-satellite data to maritime issues’ funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ae Park.

Additional information

Communicated by William Boicourt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JE., Park, KA., Kang, CK. et al. Short-Term Response of Chlorophyll-a Concentration to Change in Sea Surface Wind Field over Mesoscale Eddy. Estuaries and Coasts 43, 646–660 (2020). https://doi.org/10.1007/s12237-019-00643-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00643-w

Keywords

Navigation