Skip to main content
Log in

Catalytic behaviour of molybdenum-based zeolitic materials prepared by organic-medium impregnation and sublimation methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Molybdenum-exchanged ZSM-5 catalysts were tested in ethane ammoxidation into acetonitrile at 500 °C and at a very low contact time (0.08 s). The solids were prepared by sublimation, impregnation in CCl4 and solid-state ion exchange methods. The hydration state of the zeolite strongly affected the nature of MoCl5 and Mo(CO)6 decomposition products and, therefore, the concentration of stabilized Mo species in the final catalysts. In effect, using dehydrated ZSM-5 zeolite, the sublimation of MoCl5 led to the most active catalyst (TOF = 8.78 s−1) due to the presence, essentially, of [MoO4]2− (77%) and [Mo2O7]2− (10%) besides less-active crystalline MoO3 (12%) and traces of heptamers. However, the impregnation and the solid-state ion exchange of MoCl5 as well as the sublimation of Mo(CO)6 led to less-active catalysts owing to the presence of inefficient MoO3 oxide phase. In fact, moderate concentrations of crystalline MoO3 should coexist with [MoO4]2− species in order to activate C2H6 into C2H4 instead of enhancing the deep hydrocarbons’ oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Global acetonitrile market to reach 143 Kilotons by 2024 (CAGR 4%). https://www.abnewswire.com/pressreleases/global-acetonitrile-market-to-reach-143-kilotons-by-2024-cagr-4_400673.html. Accessed 26 June 2019

  2. O.B. Rudakov, L.V. Rudakova, V.F. Selemenev, Acetonitrile as tops solvent for liquid chromatography and extraction. J. Anal. Chromatogr. Spectrosc. 1, 1–19 (2018). https://doi.org/10.24294/jacs.v1i2.883

    Article  Google Scholar 

  3. M.M. Miller, A.J. DelMonte, Chapter 6.2: Six-membered ring systems: diazines and benzo derivatives. Prog. Heterocycl. Chem. 23, 371–402 (2011). https://doi.org/10.1016/B978-0-08-096805-6.00013-9

    Article  CAS  Google Scholar 

  4. J.-F. Cote, D. Brouillette, J.E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud, G. Perron, Dielectric constants of acetonitrile, gamma-butyrolactone, propylene carbonate, and 1,2-dimethoxyethane as a function of pressure and temperature. J. Solut. Chem. 25, 1163–1173 (1996). https://doi.org/10.1007/BF00972644

    Article  CAS  Google Scholar 

  5. N.D. Tring, D. Lepage, D. Aymé-Perrot, A. Badia, M. Dollé, D. Rochefort, An artificial lithium protective layer that enables the use of acetonitrile-based electrolytes in lithium metal batteries. Angew. Chem. Int. Ed. 57, 5072–5075 (2018). https://doi.org/10.1002/anie.201801737

    Article  CAS  Google Scholar 

  6. E.L. Tollefson, R.M. Decker, C.B. Johnson, Development of a process for production of acetonitrile from acetic acid and ammonia. Can. J. Chem. Eng. 48, 219–223 (1970). https://doi.org/10.1002/cjce.5450480223

    Article  CAS  Google Scholar 

  7. A. Tripodi, E. Bahadori, D. Cespi, F. Passarini, F. Cavani, T. Tabanelli, I. Rossetti, Acetonitrile from bioethanol ammoxidation: process design from the grass-roots and life cycle analysis. ACS Sustain. Chem. Eng. 6, 5441–5451 (2018). https://doi.org/10.1021/acssuschemeng.8b00215

    Article  CAS  Google Scholar 

  8. F. Ayari, M. Mhamdi, J. Alvarez-Rodriguez, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Cr-ZSM-5 catalysts for ethylene ammoxidation: effects of precursor nature and Cr/Al molar ratio on the physicochemical and catalytic properties. Microporous Mesoporous Mater. 171, 166–178 (2013). https://doi.org/10.1016/j.micromeso.2012.12.026

    Article  CAS  Google Scholar 

  9. E. Mannei, F. Ayari, C. Petitto, E. Asedegbega-Nieto, A.R. Guerrero-Ruiz, G. Delahay, M. Mhamdi, A. Ghorbel, Light hydrocarbons ammoxidation into acetonitrile over Mo-ZSM-5 catalysts: effect of molybdenum precursor. Microporous Mesoporous Mater. 241, 246–257 (2017). https://doi.org/10.1016/j.micromeso.2016.12.021

    Article  CAS  Google Scholar 

  10. F. Veatch, J. L. Callahan, E. C. Milberger, R. W. Foreman, in Proceedings of the 2nd International Congress on Catalysis, New York, 1960, vol. 2, p. 2647

  11. J.F. Brazdil, M.A. Toft, Encyclopedia of Catalysis, Ammoxidation (Wiley, Hoboken, 2010), pp. 1–62. https://doi.org/10.1002/0471227617.eoc020

    Book  Google Scholar 

  12. S. Essid, F. Ayari, R. Bulánek, J. Vaculík, M. Mhamdi, G. Delahay, A. Ghorbel, Over- and low-exchanged Co/BEA catalysts: general characterization and catalytic behaviour in ethane ammoxidation. Catal. Today 304, 103–111 (2018). https://doi.org/10.1016/j.cattod.2017.08.027

    Article  CAS  Google Scholar 

  13. S. Essid, F. Ayari, R. Bulánek, J. Vaculík, M. Mhamdi, G. Delahay, A. Ghorbel, Improvement of the conventional preparation methods in Co/BEA zeolites: characterization and ethane ammoxidation. Solid State Sci. 93, 13–23 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.04.008

    Article  CAS  Google Scholar 

  14. E. Mannei, F. Ayari, E. Asedegbega-Nieto, M. Mhamdi, G. Delahay, Z. Ksibi, A. Ghorbel, Physicochemical and catalytic properties of over- and low-exchanged Mo-ZSM-5 ammoxidation catalysts. Chem. Paper 73, 619–633 (2019). https://doi.org/10.1007/s11696-018-0617-1

    Article  CAS  Google Scholar 

  15. F. Solymosi, A. Cserenyi, A. Szoke, T. Bansagi, A. Oszko, Aromatization of methane over supported and unsupported Mo-based catalysts. J. Catal. 165, 150–161 (1997). https://doi.org/10.1006/jcat.1997.1478

    Article  CAS  Google Scholar 

  16. J.R. Johns, R.F. Howe, Preparation of molybdenum mordenite from MoCl5. Zeolites 5, 251–256 (1985). https://doi.org/10.1016/0144-2449(85)90096-X

    Article  CAS  Google Scholar 

  17. R.F. Howe, J. Ming, W.S. Tin, Z.J. Hua, Comparison of zeolites and aluminophosphates as hosts for transition metal complexes. Catal. Today 6, 113–122 (1989). https://doi.org/10.1016/0920-5861(89)85013-8

    Article  CAS  Google Scholar 

  18. Y. Xu, S. Liu, X. Guo, L. Wang, M. Xie, Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catal. Lett. 30, 135–149 (1994). https://doi.org/10.1007/BF00813680

    Article  CAS  Google Scholar 

  19. D. Wang, J.H. Lunsford, M.P. Rosynek, Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J. Catal. 169, 347–358 (1997). https://doi.org/10.1006/jcat.1997.1712

    Article  CAS  Google Scholar 

  20. G. Dantsin, K.S. Suslick, Sonochemical preparation of a nanostructured bifunctional catalyst. J. Am. Chem. Soc. 122, 5212–5214 (2000). https://doi.org/10.1021/ja994300w

    Article  CAS  Google Scholar 

  21. A.K. Galway, Melting and thermal decompositions of solids. An appraisal of mechanistic interpretations of thermal processes in crystals. J. Therm. Anal. Calorim. 87, 601–615 (2007). https://doi.org/10.1007/s10973-006-7529-y

    Article  CAS  Google Scholar 

  22. F. Ayari, E. Mannei, E. Asedegbega-Nieto, M. Mhamdi, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Elucidation of the solid-state ion exchange mechanism of MoCl5 into ZSM-5 zeolite. Thermochim. Acta 655, 269–277 (2017). https://doi.org/10.1016/j.tca.2017.07.011

    Article  CAS  Google Scholar 

  23. J.J. Cruywagen, Protonation, oligomerization, and condensation reactions of vanadate (V), molybdate (VI), and tungstate (VI). Adv. Inorg. Chem. 49, 127–182 (2000). https://doi.org/10.1016/S0898-8838(08)60270-6

    Article  CAS  Google Scholar 

  24. F. Ayari, E. Mannei, E. Asedegbega-Nieto, M. Mhamdi, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Solid–state ion exchange of ammonium heptamolybdate tetrahydrate into ZSM-5 zeolite. J. Therm. Anal. Calorim. 131, 1295–1306 (2018). https://doi.org/10.1007/s10973-017-6545-4

    Article  CAS  Google Scholar 

  25. S.D. Djajanti, R.F. Howe, MOCVD in Zeolites using Mo(CO)6 and W(CO)6 as precursors. Stud. Surf. Sci. Catal. 97, 197–204 (1995). https://doi.org/10.1016/S0167-2991(06)81890-2

    Article  CAS  Google Scholar 

  26. J.-H. Park, T.S. Sudarshan, Chemical Vapor Deposition, vol. 2, Surface engineering series (ASM International, Cleveland, 2001), p. 3

    Google Scholar 

  27. A. Antiñolo, P. Cañizares, F.C. Hermosilla, J.F. Baeza, F.J. Fúnez, A. de Lucas, A. Otero, L. Rodríguez, J.L. Valverde, A grafted methane partial oxidation catalyst from MoO2(acac)2 and HZSM-5 zeolite. Appl. Catal. A: Gen. 193, 139–146 (2000). https://doi.org/10.1016/S0926-860X(99)00423-8

    Article  Google Scholar 

  28. Q. Guo, L. Li, L. Chen, Y. Wang, S. Ren, B. Shen, Benzylation of anisole catalyzed by MoCl5 or MoCl5/molecular sieve system. Energy Fuels 23, 51–54 (2009). https://doi.org/10.1021/ef800680p

    Article  CAS  Google Scholar 

  29. E. Mannei, F. Ayari, E. Asedegbega-Nieto, M. Mhamdi, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Solid-state ion exchange of molybdenum (VI) acetylacetonate into ZSM-5 zeolite. Thermochim. Acta 652, 150–159 (2017). https://doi.org/10.1016/j.tca.2017.03.020

    Article  CAS  Google Scholar 

  30. F. Ayari, E. Mannei, E. Asedegbega-Nieto, M. Mhamdi, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, More insight on the isothermal spreading of solid MoO3 into ZSM-5 zeolite. React. Kinet. Mech. Catal. 124, 419–436 (2018). https://doi.org/10.1007/s11144-018-1357-5

    Article  CAS  Google Scholar 

  31. Y. Song, C. Sun, W. Shen, L. Lin, Hydrothermal post–synthesis of HZSM-5 zeolite to enhance the coke–resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization reaction: reconstruction of pore structure and modification of acidity. Appl. Catal. A: Gen. 317, 266–274 (2007). https://doi.org/10.1016/j.apcata.2006.10.037

    Article  CAS  Google Scholar 

  32. R.W. Borry, Y.H. Kim, A. Huffsmith, J.A. Reimer, E. Iglesia, Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for nonoxidative methane conversion. J. Phys. Chem. B 103, 5787–5796 (1999). https://doi.org/10.1021/jp990866v

    Article  CAS  Google Scholar 

  33. E. Oldfield, J. Haase, K.D. Schmitt, S.E. Schramm, Characterization of zeolites and amorphous silica-aluminas by means of aluminum-27 nuclear magnetic resonance spectroscopy: a multifield, multiparameter investigation. Zeolites 14, 101–109 (1994). https://doi.org/10.1016/0144-2449(94)90003-5

    Article  CAS  Google Scholar 

  34. E. Lippmaa, A. Samoson, M. Mägi, High-resolution aluminum–27 NMR of aluminosilicates. J. Am. Chem. Soc. 108, 1730–1735 (1986). https://doi.org/10.1021/ja00268a002

    Article  CAS  Google Scholar 

  35. M.B. Rao, R.G. Jenkins, Molecular dimensions and kinetic diameters for diffusion for various species. Carbon 25, 445–446 (1987). https://doi.org/10.1016/0008-6223(87)90018-2

    Article  CAS  Google Scholar 

  36. F.S. Xiao, S. Zheng, J. Sun, R. Yu, S. Qiu, R. Xu, Dispersion of inorganic salts into zeolites and their pore modification. J. Catal. 176, 474–487 (1998). https://doi.org/10.1006/jcat.1998.2054

    Article  CAS  Google Scholar 

  37. C.A. Fyfe, G.J. Kennedy, C.T. De Schutter, G.T. Kokotailo, Sorbate-induced structural changes in ZSM-5 (silicalite). J. Chem. Soc. Chem. Commun. (1984). https://doi.org/10.1039/C39840000541

    Article  Google Scholar 

  38. Y. Marcus, The Properties of Solvents, vol. 4 (Wiley, England, 1999), p. 239

    Google Scholar 

  39. D.C. Baertsch, H.H. Funke, J.L. Falconer, R.D. Noble, Permeation of aromatic hydrocarbon vapors through silicalite–zeolite membranes. J. Phys. Chem. 100, 7676–7679 (1996). https://doi.org/10.1021/jp960226h

    Article  CAS  Google Scholar 

  40. K.G. Marek, K. Tarach, M. Choi, 2,6-di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites. J. Phys. Chem. C 118, 12266–12274 (2014). https://doi.org/10.1021/jp501928k

    Article  CAS  Google Scholar 

  41. J. Goetze, I. Yarulina, J. Gascon, F. Kapteijn, B.M. Weckhuysen, Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined Operando X-ray diffraction and UV–Vis spectroscopy. ACS Catal. 8, 2060–2070 (2018). https://doi.org/10.1021/acscatal.7b04129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Niwa, M. Iwamoto, K. Segawa, Temperature-programmed desorption of ammonia on zeolites. Influence of the experimental conditions on the acidity measurement. Bull. Chem. Soc. Jpn. 59, 3735–3739 (1986). https://doi.org/10.1246/bcsj.59.3735

    Article  CAS  Google Scholar 

  43. P. Sarv, C. Fernadez, J.-P. Amoureux, K. Keskinen, Distribution of tetrahedral aluminium sites in ZSM-5 type zeolites: an 27Al (Multiquantum) Magic Angle Spinning NMR Study. J. Phys. Chem. 100, 19223–19226 (1996). https://doi.org/10.1021/jp962519g

    Article  CAS  Google Scholar 

  44. G.A. Khan, C.A. Hogarth, Optical absorption spectra of evaporated V2O5 and co-evaporated V2O5/B2O3 thin films. J. Mater. Sci. 26, 412–416 (1991). https://doi.org/10.1007/BF00576535

    Article  CAS  Google Scholar 

  45. R.S. Weber, Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J. Catal. 151, 470–474 (1995). https://doi.org/10.1006/jcat.1995.1052

    Article  CAS  Google Scholar 

  46. L. Čapek, J. Dědeček, P. Sazama, B. Wichterlová, The decisive role of the distribution of Al in the framework of beta zeolites on the structure and activity of Co ion species in propane-SCR-NOx in the presence of water vapour. J. Catal. 272, 44–54 (2010). https://doi.org/10.1016/j.jcat.2010.03.013

    Article  CAS  Google Scholar 

  47. D. Kaucký, A. Vondrová, J. Dědeček, B. Wichterlová, Activity of Co ion sites in ZSM-5, Ferrierite, and Mordenite in selective catalytic reduction of NO with methane. J. Catal. 194, 318–329 (2000). https://doi.org/10.1006/jcat.2000.2925

    Article  CAS  Google Scholar 

  48. E. Mannei, F. Ayari, M. Mhamdi, M. Almohalla, A.R. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Ammoxidation of C2 hydrocarbons over Mo-zeolite catalysts prepared by solid-state ion exchange: nature of molybdenum species. Microporous Mesoporous Mater. 219, 77–86 (2016). https://doi.org/10.1016/j.micromeso.2015.07.036

    Article  CAS  Google Scholar 

  49. P. Krüger, M. Petukhov, B. Domenichini, A. Berkó, S. Bourgeois, Monolayer formation of molybdenum carbonyl on Cu(111) revealed by scanning tunneling microscopy and density functional theory. J. Phys. Chem. C 116, 10617–10622 (2012). https://doi.org/10.1021/jp300832a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Professor Farhat Farhat (Faculté de Pharmacie de Monastir, Tunisie), a great educator in the field of analytical chemistry and the memory of Professor Mohamed Salah Belkhiria (Faculté des Sciences de Monastir, Tunisie), a talented educator of a great knowledge in the field of coordination chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Mannei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannei, E., Ayari, F., Asedegbega-Nieto, E. et al. Catalytic behaviour of molybdenum-based zeolitic materials prepared by organic-medium impregnation and sublimation methods. J IRAN CHEM SOC 17, 1087–1101 (2020). https://doi.org/10.1007/s13738-019-01837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01837-6

Keywords

Navigation