Skip to main content
Log in

Polymer–Inorganic Composites Based on Celgard Matrices Obtained from Solutions of (Aminopropyl)triethoxysilane in Supercritical Carbon Dioxide

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for the fabrication of a polymer-inorganic composite material based on the Celgard polymer matrix by means of the introduction of silica nanoparticles with amino groups into the polymer structure through impregnation of the porous structure with solutions of the aminosilane precursor in supercritical СO2. The presence of inorganic nanoparticles made it possible to noticeably enhance the hydrophilicity of the material, and the absolute wettability of supercritical CO2 was favorable for uniform particle distribution in membrane pores. The particles growing in membrane pores allowed one to reduce the pore size, which opens ways to control ion-transport selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Leung, P. and Xiaohong, L., Ponce de León, C., Berlouis, L., Low, J., and Walsh, F., RSC Adv., 2012, vol. 2, no. 27, pp. 10125–10156. https://doi.org/10.1039/c2ra21342g

    Article  CAS  Google Scholar 

  2. Skyllas-Kazacos, M., Chakrabarti, M., Hajimolana, S., Mjalli, F., and Saleem, M., J. Electrochem. Soc., 2011, vol. 158, no. 8, pp. R55–R79. https://doi.org/10.1149/1.3599565

    Article  CAS  Google Scholar 

  3. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M., and Schubert, U., Angew. Chem. Int. Ed., 2017, vol. 56, no. 3, pp. 686–711. https://doi.org/10.1002/anie.201604925

    Article  CAS  Google Scholar 

  4. Mohammadi, T. and Skyllas-Kazacos, M., J. Membr. Sci., 1995, vol. 98, no. 1/2, pp. 77–87. https://doi.org/10.1016/0376-7388(94)00178-2

    Article  CAS  Google Scholar 

  5. Wei, X., Li, B., and Wang, W., Polym. Rev., 2015, vol. 55, no. 2, pp. 247–272. https://doi.org/10.1080/15583724.2015.1011276

    Article  CAS  Google Scholar 

  6. Oriji, G., Katayama, Y., and Miura, T., J. Power Sources, 2005, vol. 139, no. 1/2, pp. 321–324. https://doi.org/10.1016/j.jpowsour.2004.03.008

    Article  CAS  Google Scholar 

  7. Doan, T.N.L., Hoang, T.K.A., and Chen, P., RSC Adv., 2015, vol. 5, no. 89, pp. 72805–72815. https://doi.org/10.1039/C5RA05914C

    Article  CAS  Google Scholar 

  8. Zhang, H., Zhang, H., Li, H., Mai, Z., and Zhang, J., Energy Environ. Sci., 2011, pp. 1676–1679. https://doi.org/10.1039/c1ee01117k

  9. Lu, W., Yuan, Z., Zhao, Y., Zhang, H., Zhang, H., and Li, X., Chem. Soc. Rev. Roy. Soc. Chem., 2017, vol. 46, no. 8, pp. 2199–2236. https://doi.org/10.1039/c6cs00823b

    Article  CAS  Google Scholar 

  10. Zhang, H., Zhang, H., Li, X., Mai, Z., and Wei, W., Energy Environ. Sci., 2012, vol. 5, no. 4, pp. 6299–6303. https://doi.org/10.1039/c1ee02571f

    Article  CAS  Google Scholar 

  11. Wei, X., Nie, Z., Luo, Q., Li, B., Chen, B., Simmons, K., Sprenkle, V., and Wang, W., Adv. Energy Mater., 2013, vol. 3, no. 9, pp. 1215–1220. https://doi.org/10.1002/aenm.201201112

    Article  CAS  Google Scholar 

  12. Nikitin, L.N., Gallyamov, M.O., Nikolaev, A.Yu., Said-Galiev, E.E., Khokhlov, A.R., Bukalov, S.S., Magdanurov, G.I., Volkov, V.V., Shtykova, E.V., Dembo, K.A., and El’yashevich, G.K., Vysokomol. Soed., Ser. A, 2006, vol. 48, no. 8, pp. 1431–1447.

    CAS  Google Scholar 

  13. Gvozdik, N.A., Zefirov, V.V., El’manovich, I.V., Karpushkin, E.A., Stivenson, K.D., Sergeev, V.G., and Gallyamov, M.O., Colloid J., 2018, vol. 80, no. 6, pp. 761–770. doi: 10.1134/S1061933X1901006X

  14. Sarada, T. and Sawyer, L., Microporous Membr., 1983, vol. 15, pp. 97–113. https://doi.org/10.1016/S0376-7388(00)81364-2

    Article  CAS  Google Scholar 

  15. Stalder, A.F., Melchior, T., Müller, M., Sage, D., Blu, T., and Unser, M., Coll. Surf. A Physicochem. Eng. Asp., 2010, vol. 364, nos. 1–3, pp. 72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040

Download references

FUNDING

This study was supported by the Russian Science Foundation (project no. 16–13–10338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zefirov.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmanovich, I.V., Zefirov, V.V., Sizov, V.E. et al. Polymer–Inorganic Composites Based on Celgard Matrices Obtained from Solutions of (Aminopropyl)triethoxysilane in Supercritical Carbon Dioxide. Dokl Phys Chem 485, 53–57 (2019). https://doi.org/10.1134/S0012501619040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501619040018

Navigation