Skip to main content
Log in

Microbiome Affects the Adaptation of Drosophila melanogaster to a High NaCl Concentration

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Symbiotic microbes affect many aspects of the life of multicellular organisms and may favor their adaptation to a changing environment, but there is little direct experimental evidence of such a contribution. To assess the possible role of the microbiome in the adaptation of Drosophila melanogaster to a high-NaCl feed substrate, we used two laboratory lines of salt-adapted flies (C1, C2) and two control lines cultivated on a standard feed without salt (H1, H2). We have already shown that the presowing of homogenate of flies C1 on the surface of a saline feed increases the breeding efficiency and enhances the development of drosophila larvae in comparison with a homogenate of H1 flies. We repeated this experiment for lines C2 and H2 and obtained similar data, which proves the reproducibility of the revealed effect. In addition, we found contrasting differences in the number and taxonomic composition of yeast in drosophila homogenates of the salt-adapted and control lines. The results correspond to the assumption that changes in the symbiotic microbiome, including its yeast component, may contribute to the adaptation of drosophila to unfavorable feed substrates. The possible evolutionary consequences of such a contribution are discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anagnostou, C., Dorsch, M., and Rohlfs, M., Influence of dietary yeasts on Drosophila melanogaster life-history traits, Entomol. Exp. Appl., 2010, vol. 136, pp. 1–11.

    Article  Google Scholar 

  2. Arbuthnott, D. and Rundle, H.D., Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations, Anim. Behav., 2014, vol. 87, pp. 45–51.

    Article  Google Scholar 

  3. Blum, J.E., Fischer, C.N., Miles, J., and Handelsman, J., Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster, mBio, 2013, vol. 4, p. e00860.

    Article  Google Scholar 

  4. Bordenstein, S.R. and Theis, K.R., Host biology in light of the microbiome: ten principles of holobionts and hologenomes, PLoS Biol., 2015, vol. 13, no. 8, p. e1002226.

    Article  Google Scholar 

  5. Brummel, T., Ching, A., Seroude, L., Simon, A.F., and Benzer, S., Drosophila lifespan enhancement by exogenous bacteria, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 12974–12979.

    Article  CAS  Google Scholar 

  6. Collins, N., Population ecology of Ephydra cinerea Jones (Diptera: Ephydridae), the only benthic metazoan of the Great Salt Lake, USA, Hydrobiologia, 1980, vol. 68, pp. 99–112.

    Article  Google Scholar 

  7. Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., and Neiman, A.M., The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila, PLoS One, 2008, vol. 3, no. 8, p. e2873.

    Article  Google Scholar 

  8. Crispo, E., The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity, Evolution, 2007, vol. 61, no. 11, pp. 2469–2479.

    Article  Google Scholar 

  9. Dettman, J.R., Sirjusingh, C., Kohn, L.M., and Anderson, J.B., Incipient speciation by divergent adaptation and antagonistic epistasis in yeast, Nature, 2007, vol. 447, pp. 585–588.

    Article  CAS  Google Scholar 

  10. Dmitrieva, A.S., Ivnitsky, S.B., and Markov, A.V., Adaptation of Drosophila melanogaster to unfavorable feed substrate is accompanied by expansion of trophic niche, Biol. Bull. Rev., 2017, vol. 7, no. 5, pp. 369–379.

    Article  Google Scholar 

  11. Erkosar, B., Storelli, G., Defaye, A., and Leulier, F., Host-intestinal microbiota mutualism: “learning on the fly,” Cell Host Microbe, 2013, vol. 13, pp. 8–14.

    Article  CAS  Google Scholar 

  12. Faria, V.G., Martins, N.E., Paulo, T., Teixeira, L., Sucena, E., and Magalhres, S., Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs, Evolution, 2015, vol. 69, pp. 2799–2809.

    Article  Google Scholar 

  13. Fitzpatrick, B.M., Underappreciated consequences of phenotypic plasticity for ecological speciation, Int. J. Ecol., 2012, art. ID 256017.

  14. Fry, J.D., Detecting ecological trade-offs using selection experiments, Ecology, 2003, vol. 84, pp. 1672–1678.

    Article  Google Scholar 

  15. Ganter, P.F., The vectoring of cactophilic yeasts by Drosophila, Oecologia, 1988, vol. 75, no. 3, pp. 400–404.

    Article  Google Scholar 

  16. Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, 1990.

    Google Scholar 

  17. Glushakova, A.M., Kachalkin, A.V., and Chernov, I.Yu., Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil, Eurasian Soil Sci., 2011, vol. 44, no. 8, pp. 886–892.

    Article  Google Scholar 

  18. Herbst, D.B., Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters, Hydrobiologia, 2001, vol. 466, pp. 209–219.

    Article  CAS  Google Scholar 

  19. Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M.C., Experimental evolution, Trends Ecol. Evol., 2012, vol. 27, no. 10, pp. 547–560.

    Article  Google Scholar 

  20. Kneitel, J.M. and Chase, J.M., Trade-offs in community ecology: linking spatial scales and species coexistence, Ecol. Lett., 2004, vol. 7, pp. 69–80.

    Article  Google Scholar 

  21. Korol, A., Rashkovetsky, E., Iliadi, K., Michalak, P., Ronin, Y., and Nevo, E., Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at “Evolution canyon,” Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 12637–12642.

    Article  Google Scholar 

  22. Kreslavskii, A.G., Sympatric speciation in animals: disruptive selection or ecological segregation, Zh. Obshch. Biol., 1994, vol. 55, nos. 4–5, pp. 404–419.

  23. Long, T.A.F., Rowe, L., and Agrawal, A.F., The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster, Am. Nat., 2013, vol. 181, pp. 532–544.

    Article  Google Scholar 

  24. Margulis, L. and Fester, R., Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, Boston: MIT Press., 1991.

    Google Scholar 

  25. Markov, A.V. and Ivnitsky, S.B., Evolutionary role of phenotypic plasticity, Moscow Univ. Biol. Sci. Bull., 2016, vol. 71, no. 4, pp. 185–192.

    Article  Google Scholar 

  26. Markov, A.V., Ivnitsky, S.B., Kornilova, M.B., Naimark, E.B., Shirokova, N.G., and Perfilieva, K.S., Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster, Biol. Bull. Rev., 2016, vol. 6, no. 5, pp. 429–435.

    Article  Google Scholar 

  27. McFall-Ngai, M.J., Unseen forces: the influence of bacteria on animal development, Dev. Biol., 2002, vol. 242, pp. 1–14.

    Article  CAS  Google Scholar 

  28. Panchenko, P.L., Kornilova, M.B., Perfilieva, K.S., and Markov, A.V., Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium, Biol. Bull. (Moscow), 2017, vol. 44, no. 4, pp. 345–354.

    Article  CAS  Google Scholar 

  29. Rice, W.R. and Salt, G.W., The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence, Evolution, 1990, vol. 44, pp. 1140–1152.

    Article  Google Scholar 

  30. Roff, D.A. and Fairbairn, D.J., The evolution of trade-offs: where are we? J. Evol. Biol., 2007, vol. 20, pp. 433–447.

    Article  CAS  Google Scholar 

  31. Rosenberg, E., Sharon, G., and Zilber-Rosenberg, I., The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework, Environ. Microbiol., 2009, vol. 11, no. 12, pp. 2959–2962.

    Article  Google Scholar 

  32. Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., The role of microorganisms in coral health, disease and evolution, Nat. Rev. Microbiol., 2007, vol. 5, no. 5, pp. 355–362.

    Article  CAS  Google Scholar 

  33. Sharon, G., Segal, D., Ringo, J.M., Hefetz, A., Zilber-Rosenberg, I., and Rosenberg, E., Commensal bacteria play a role in mating preference of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 20051–20056.

    Article  CAS  Google Scholar 

  34. Shin, S.C., Kim, S.H., You, H., Kim, B., Kim, A.C., Lee, K.A., Yoon, J.H., Ryu, J.H., and Lee, W.J., Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling, Science, 2011, vol. 334, pp. 670–674.

    Article  CAS  Google Scholar 

  35. Starmer, W.T., A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities, Evolution, 1981, vol. 35, no. 1, pp. 38–52.

    Article  CAS  Google Scholar 

  36. Starmer, W.T., Barker, J.S.F., Phaff, H.J., and Fogleman, J.C., Adaptations of Drosophila and yeasts: their interactions with the volatile 2-propanol in the Cactus–microorganism–Drosophila model system, Aust. J. Biol. Sci., 1986, vol. 39, pp. 69–77.

    Article  CAS  Google Scholar 

  37. Stergiopoulos, K., Cabrero, P., Davies, S.A., and Dow, J.A., Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress, Physiol. Genomics, 2009, vol. 37, pp. 1–11.

    Article  CAS  Google Scholar 

  38. Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J., and Leulier, F., Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing, Cell Metab., 2011, vol. 14, pp. 403–414.

    Article  CAS  Google Scholar 

  39. Te Velde, J.H., Molthoff, C.F.M., and Scharloo, W., The function of anal papillae in salt adaptation of Drosophila melanogaster larvae, J. Evol. Biol., 1988, vol. 2, pp. 139–153.

    Article  Google Scholar 

  40. Tobler, R., Hermisson, J., and Schlutterer, C., Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations, Evolution, 2015, vol. 69, pp. 1745–1759.

    Article  Google Scholar 

  41. Waddington, C.H., Genetic assimilation of acquired characters, Evolution, 1953, vol. 7, no. 4676, pp. 118–126.

    Article  Google Scholar 

  42. Waddington, C.H., Canalization of development and genetic assimilation of acquired characters, Nature, 1959, vol. 183, pp. 1654–1655.

    Article  CAS  Google Scholar 

  43. Wong, C.N., Ng, P., and Douglas, A.E., Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster, Environ. Microbiol., 2011, vol. 13, pp. 1889–1900.

    Article  CAS  Google Scholar 

  44. Yakovleva, E.U., Naimark, E.B., and Markov, A.V., Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity, Biochemistry (Moscow), 2016, vol. 81, no. 12, pp. 1445–1460.

    CAS  PubMed  Google Scholar 

  45. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-04-00915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on animal welfare. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivnitsky, S.B., Maximova, I.A., Panchenko, P.L. et al. Microbiome Affects the Adaptation of Drosophila melanogaster to a High NaCl Concentration. Biol Bull Rev 9, 465–474 (2019). https://doi.org/10.1134/S2079086419050049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419050049

Navigation