Skip to main content
Log in

Study on the Structure of Cu/ZrO2 Catalyst and the Formation Mechanism of Disodium Iminodiacetate and Sodium Glycine

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new method to prepare Cu/ZrO2 catalysts by reducing CuO/ZrO2 with hydrazine hydrate is reported, and the prepared catalysts were used to synthesize disodium iminodiacetate by diethanolamine dehydrogenation. Hydrazine hydrate can rapidly reduce the CuO/ZrO2 precursor powder in an alkaline environment at a moderate temperature. The ratio of Cu0/Cu+ at the Cu/ZrO2 surface was controlled by the amount of hydrazine hydrate and the reduction reaction time. The formation mechanism of disodium glycine as the main byproduct and iminodiacetate were deduced by investigating the product yield, the reaction time, and the presence of acetaldehyde in the evolved gas. It has been shown that the ratio of Cu0/Cu+ in Cu/ZrO2 significantly affects the dehydrogenation of diethanolamine into disodium iminodiacetate. Cu0 and Cu+ are the catalytic activity centers in the dehydrogenation of diethanolamine which respectively produce intermediate aldehydes and an ester via nucleophilic addition reactions. The formation mechanism of sodium glycinate is related to the tautomerism of intermediate products and Schiff base hydrolysis.

Graphic Abstract

The formation mechanism of disodium iminodiacetate and sodium glycine producing by the dehydrogenation of diethanolamine over the Cu/ZrO2 catalysts which were prepared by a new reduction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alibhai MF, Stallings WC (2001) Proc Natl Acad Sci USA 98:2944–2946

    CAS  PubMed  Google Scholar 

  2. Chen D, Li J, Li GR, Chen BH, Yin FX (2013) Chem Ind Eng Prog 32:1635–1640

    CAS  Google Scholar 

  3. Andreev DV, Sergeev EE, Gribovskii AG, Makarshin LL, Prikhod’ko SA, Adonin NY, Pai ZP, Parmon VN (2017) Chem Eng J 330:899–905

    CAS  Google Scholar 

  4. Zheng XJ, Yang GW, Xu XX, Yang G (2001) Fine Chem 18:608–610

    Google Scholar 

  5. Wang Y, Zhao Y, Zhao Z, Lan X, Xu J, Xu W, Duan Z (2019) Acta Chim Sin 71:661–668

    Google Scholar 

  6. Hickman DA, Mosner K, Ringer JW (2015) Chem Eng J 278:447–453

    CAS  Google Scholar 

  7. Andreev DV, Gribovskii AG, Makarshin LL, Adonin NY, Prikhod’ko SA, Pai ZP, Parmon VN (2013) Catal Ind 5:1–8

    Google Scholar 

  8. Yang AS, Pan YF, Sun Q, Cheng R, Zheng YP, Xu GM (2010) J Chem Eng Chin Univ 4:590–595

    Google Scholar 

  9. Lu Z, Gao D, Yin H, Wang A, Liu S (2015) J Ind Eng Chem 31:301–308

    CAS  Google Scholar 

  10. Nagaiah P, Venkat Rao M, Thirupathaiah K, Venkateshwarlu V, David Raju B, Rama Rao KS (2018) Res Chem Intermed 44:5817–5831

    CAS  Google Scholar 

  11. Yin H, Yin H, Wang A, Shen L, Liu Y, Zheng Y (2017) J Nanosci Nanotechnol 17:1255–1266

    CAS  PubMed  Google Scholar 

  12. Sun D, Misu T, Yamada Y, Sato S (2019) Appl Catal A. https://doi.org/10.1016/j.apcata.2019.06.007

    Article  Google Scholar 

  13. Ohira M, Liu H, He D, Hirata Y, Sano M, Suzuki T, Miyake T (2018) J Jpn Petrol Inst 61:205–212

    CAS  Google Scholar 

  14. Gao D, Yin H, Wang A, Shen L, Liu S (2015) J Ind Eng Chem 26:322–332

    CAS  Google Scholar 

  15. Wang LX, Zhu WC, Zheng DF, Yu X, Cui J, Jia MJ, Zhang WX, Wang ZL (2010) React Kinet Mech Catal 101:365–375

    CAS  Google Scholar 

  16. Inui K, Kurabayashi T, Sato S (2002) J Catal 212:207–215

    CAS  Google Scholar 

  17. Inui K, Kurabayashi T, Sato S (2002) Appl Catal A 237:53–61

    CAS  Google Scholar 

  18. Ro I, Liu YF, Ball MR, Jackson DHK, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) ACS Catalysis 6:7040–7050

    CAS  Google Scholar 

  19. Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) J Mol Catal A 334:29–34

    CAS  Google Scholar 

  20. Sato AG, Volanti DP, Freitas IC, Longo El, Bueno JC (2012) Catal Commun 26:122–126

    CAS  Google Scholar 

  21. Bai GY, Wang YL, Li F, Zhao Z, Chen GF, Li N, Han X (2012) Catal Lett 143:101–107

    Google Scholar 

  22. Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) J Mol Catal A 381:26–37

    CAS  Google Scholar 

  23. Chen CQ, Ruan CX, Zhan YY, Lin XY, Zheng Q, Wei KM (2014) Int J Hydrogen Energy 39:317–324

    CAS  Google Scholar 

  24. Ji DH, Zhu WC, Wang ZL, Wang GJ (2007) Catal Commun 8:1891–1895

    CAS  Google Scholar 

  25. Hu Q, Fan GL, Yan L, Cao XZ, Zhang P, Wang BY, Li F (2016) Green Chem 18:2317–2322

    CAS  Google Scholar 

  26. Shi QJ, Liu N, Liang Y (2007) Chin J Catal 28:57–61

    CAS  Google Scholar 

  27. Komandur VR, Guggilla VS, Chakravarthula SS, Vattikonda VR (2007) J Phys Chem B 11:543–550

    Google Scholar 

  28. Kim S (1974) J Electron Spectrosc Relat Phenom 3:217–226

    CAS  Google Scholar 

  29. Severino F, Brito JL, Laine J, Fierro JL, L´opez Agudo A (1998) J Catal 177:82–95

    CAS  Google Scholar 

  30. Acharyya SS, Ghosh S, Bal R (2014) ACS Sustain Chem Eng 2:584–589

    CAS  Google Scholar 

  31. Maiti S, Llorca J, Dominguez M, Colussi S, Trovarelli A, Priolkar KR, Aquilanti G, Gayen A (2016) J Power Sources 304:319–331

    CAS  Google Scholar 

  32. Unnikrishnan P, Srinivas D (2012) Ind Eng Chem Res 51:6356–6363

    CAS  Google Scholar 

  33. Hu Q, Yang L, Fan GL, Li F (2016) Chem Nano Mat 2:888–896

    CAS  Google Scholar 

  34. Wang J, Lei Z, Qin H, Zhang L, Li F (2011) Ind Eng Chem Res 50:7120–7128

    CAS  Google Scholar 

  35. Yang YC, Duan ZK, Liu WY, Li GL, Xiong Y (2001) Chem React Eng Technol 17:210–215

    CAS  Google Scholar 

  36. Balaraman E, Khaskin E, Leitus G, Milstein D (2013) Nat Chem 5:122–125

    CAS  PubMed  Google Scholar 

  37. Zhang M, Zhao YJ, Liu Q, Yang L, Fan GL, Li F (2016) Dalton Trans 45:1093–1102

    CAS  PubMed  Google Scholar 

  38. Wang ZY, Liu XY, Rooney DW, Hu P (2015) Surf Sci 640:181–189

    CAS  Google Scholar 

  39. Takeshita K, Nakamura S, Kawamoto K (1978) Bull Chem Soc Jpn 51:2622–2627

    CAS  Google Scholar 

  40. Neurock M, Tao ZY, Chemburkar A, Hibbitts DD, Iglesia E (2017) Faraday Discuss 197:59–86

    CAS  PubMed  Google Scholar 

  41. Manrı́quez ME, López T, Gómez R, Navarrete J (2004) J Mol Catal A 220:229–237

    Google Scholar 

  42. Jiang ZW, Zhang ZR, Song JL, Meng QL, Zhou HC, He ZH, Han BX (2016) ACS Sustain Chem Eng 4:305–311

    CAS  Google Scholar 

Download references

Acknowledgements

Support from the National Natural Science Foundation of China (Grant No. NSFC 21576229) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengkang Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, H., Duan, Z. et al. Study on the Structure of Cu/ZrO2 Catalyst and the Formation Mechanism of Disodium Iminodiacetate and Sodium Glycine. Catal Lett 150, 1111–1120 (2020). https://doi.org/10.1007/s10562-019-02989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02989-z

Keywords

Navigation