Skip to main content

Advertisement

Log in

Hydrogen Oxidation in Alkaline Media: the Bifunctional Mechanism for Water Formation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Water formation according to Had + OHadH2O has recently been proposed as an intermediate step during hydrogen oxidation in alkaline solutions. Choosing Ni/Cu bimetallic surfaces as model catalysts, we have investigated the energetics and kinetics of this step in the form of a bifunctional mechanism. With the aid of density functional theory, we have identified several reaction paths on such surfaces with very low activation energies, suggesting that this step can be very fast. In all cases, the initial adsorption sites have both nickel and copper atoms as nearest neighbors. We suggest a strategy to find other bifunctional surfaces with good catalytic properties for this reaction.

A bifunctional mechanism for the formation of water as an intermediate step for hydrogen oxidation is investigated by density functional theory. Using copper/nickel alloys of various compositions as an example, potential energy surfaces are calculated for various reaction paths. On some favorable sites the reaction may be too fast to be observed by electrochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, . Angew. Chem. Int. Ed. 51, 12495 (2012)

    Article  CAS  Google Scholar 

  2. Y Wang, G Wang, G Li, B Huang, J Pan, Q Liu, J Han, L Xiao, J Lu, L Zhuang, . Energy Environ. Sci. 8, 177 (2015)

    Article  CAS  Google Scholar 

  3. J Li, S Ghoshal, MK Bates, TE Miller, V Davies, E Stavitski, K Attenkofer, S Mukerjee, Z-F Ma, Q Jia, . Angew. Chem. Int. Ed. 129, 15880 (2017)

    Google Scholar 

  4. D. Strmcnik, M. Uchimura, C Wang, R Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, . Nat. Chem. 5, 300 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. D. Salmazo, D. F. Juarez, A.G. Oshchepkov, O.V. Cherstiouk, A. Bonnefont, R.R. Natzmutdinov, W. Schmickler, E. Savinova, . Electrochim. Acta. 30, 452 (2019)

    Article  CAS  Google Scholar 

  6. E.S. Davydova, S. Mukerjee, F. Jaouen, D. Dekel, . ACS Catal. 8, 6665 (2018)

    Article  CAS  Google Scholar 

  7. M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, . Nano Res. 9, 28 (2016)

    Article  CAS  Google Scholar 

  8. P. Quaino, G. Belletti, A. Shermukhamedov, D.V. Glukhov, E. Santos, W. Schmickler, R. Nazmutdinov, . PhysChemChemPhys. 19, 26812 (2017)

    CAS  Google Scholar 

  9. J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, . J. Electrochem. Soc. 152, J23 (2005)

    Article  CAS  Google Scholar 

  10. G.S. Karlberg, T.F. Jaramillo, E. Skulason, J. Rossmeisl, T. Bligaard, J.K. Nørskov, . Phys. Rev. Lett. 99, 126101 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.-J. Jonsson, . Phys. Chem. B. 108, 17886 (2004)

    Article  CAS  Google Scholar 

  12. E. Santos, P. Hindelang, P. Quaino, E.N. Schulz, G. Soldano, W. Schmickler, . Chemphyschem. 12, 2274 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. F. Juarez, D. Salmazo, E.-R. Savinova, P. Quaino, G. Belletti, E. Santos, W. Schmickler, . J. Electroanal. Chem. 832, 137 (2019)

    Article  CAS  Google Scholar 

  14. L. Pinto, P. Quaino, M. Arce, E. Santos, W. Schmickler, . ChemPhysChem. 15, 2003 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. P. Quaino, F. Juarez, E. Santos, W. Schmickler, . Beilstein J. Nanotechnol. 5, 846 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E. Santos, P. Quaino, W. Schmickler, . Electrochim. Acta. 55, 4346 (2010)

    Article  CAS  Google Scholar 

  17. O.V. Cherstiouk, P.A. Simonov, A.G. Oshchepkov, V.I. Zaikovskii, T. Kardash, A. Bonnefont, V.N. Parmon, E.R. Savinova, . J. Electroanal. Chem. 783, 146 (2016)

    Article  CAS  Google Scholar 

  18. A.G. Oshchepkov, P.A. Simonov, O.V. Cherstiouk, R.R. Nazmutdinov, D.V. Glukhov, V.I. Zaikovskii, T.Y. Kardash, R.I. Kvon, A. Bonnefont, A.N. Simonov, V.N. Parmon, E.R. Savinova, . Top. Catal. 58, 1181 (2015)

    Article  CAS  Google Scholar 

  19. G. Henkelman, H. Jónsson, . J. Chem. Phys. 113, 9978 (2000)

    Article  CAS  Google Scholar 

  20. G. Henkelman, B. P. Uberuaga, H. Jónsson, . J. Chem. Phys. 113, 9901 (2000)

    Article  CAS  Google Scholar 

  21. J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 276, 92 (2010)

    Article  CAS  Google Scholar 

  22. J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 313, 24 (2014)

    Article  CAS  Google Scholar 

  23. A. Mohsenzadeh, K. Bolton, T. Richards, . Surf. Sci. 62, 71 (2014)

    Google Scholar 

  24. A. Mohsenzadeh, T. Richards, K.B. Surf, . Science. 64, 53 (2016)

    Google Scholar 

  25. H. Ibach. Physics of Surfaces and Interfaces, chapter 10 (Springer, Berlin, 2006)

    Google Scholar 

  26. Z-D He, Y-X Chen, E. Santos, W. Schmickler, . Angew. Chem. Int. Ed. 57, 2 (2018)

    Article  CAS  Google Scholar 

  27. J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, . Phys Rev. B. 71, 035109 (2005)

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, M. Ernzerhof, . Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  29. Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H. Gao, . Adv. Mater. 21, 2777 (2009)

    Article  CAS  Google Scholar 

  30. H. J. Monkhorst, J. D. Pack, . Phys. Rev. B. 13, 5188 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

All authors thank Elizabeth Santos from Ulm University for useful discussions.

Funding

This study was financially supported by the Deutsche Forschungsgemeinschaft (FOR 1376). W.S. thanks CONICET for continued support. A generous grant of computing time from the Baden-Württemberg grid is gratefully acknowledged. P.Q. thanks PICT-2014-1084, CONICET, and UNL for support. D. Salmazo thanks CNPq-Brazil (248817/2013-2) for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Juarez or Wolfgang Schmickler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical Details

Appendix: Technical Details

DFT calculations were performed using the GPAW code [27]. Perdew Burke and Erzenhof (PBE) [28] exchange-correlation functional was combined with PAW [29] to solve KS equations. The wave-functions were expanded using real-space uniform grids (with 0.2 Å of spacing) and the finite-difference approximation. Brillouin-zone integration was done using a 4 × 4 × 1 k-point Monkhorst- Pack grid [30], which corresponds to a (2 × 2) surface unit cell. For relaxations, the two bottom layers were fixed at the calculated positions corresponding to the bulk, and coverage of 1/4 when there is only one adsorbate considered. In all the calculations, 20 Å of vacuum was considered. The geometry convergence was achieved when the total forces were less than 0.02 eV/Å. Spin polarization was considered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez, F., Salmazo, D., Quaino, P. et al. Hydrogen Oxidation in Alkaline Media: the Bifunctional Mechanism for Water Formation. Electrocatalysis 10, 584–590 (2019). https://doi.org/10.1007/s12678-019-00546-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00546-1

Keywords

Navigation