Skip to main content

Advertisement

Log in

Experimental Investigation on the Treatment of Mixed Market Waste by a Novel Rotary Air Dryer

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present study, the market wastes were treated and made as fine briquettes by using a portable rotary dryer. For the experimental purpose, a portable rotary dryer was designed and developed to determine the drying conditions of market waste. A U-type electric air heater of 1000 W were installed in the heating unit along with solar parabolic dish collector. The input parameters for the experiments are drying temperature (120 °C), rotation of dryer (3 rpm), air velocity (5 m/s), initial residue temperature (30 °C) and residue bulk density (200–250 kg/m3). Mixed market wastes are in the proportions such as: Briquette 1: watermelon lund 40% + drumstick pods 10% + beans pods 30% + drumstick peels 20%, briquette 2: watermelon lund 30% + drumstick pods 30% + beans pods 20% + drumstick peels 20%. The final product resulted in fiber form, which can be compacted to an even size of fuel briquettes which can be directly used for commercial and domestic heating. The performance of rotary dryer was analyzed based on inner rotary drum depth position (z = 0 m, z = 0.25 m, z = 0.5 m) and drying time (up to 150 min). The performance parameters like variation in moisture ratio, drying temperature, dry air humidity and air temperature were investigated in the present study. Residence time required for drying the mixed market waste up to milling moisture content (< 20%) in the developed dryer takes 150 min, while the sun drying takes 12–14 h generally. Calorific value of the fuel briquettes produced in the study is determined as 16.2–17.8 MJ/kg. The developed rotary air dryer provides a promising alternative to landfilling because of its low cost of construction, easy operation, green energy utilization and portability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RDF:

Refuse derived fuel

BHP:

Brake horse power

ASTM:

American Society for Testing and Materials

CV:

Calorific value (MJ/kg)

SMER:

Specific moisture extraction rate

SEC:

Specific energy consumption

SHC:

Specific heat consumption

EMC:

Equilibrium moisture content

Q:

Heat load required for the dryer (kJ/kg-h)

mg :

Mass flow rate of air (kg/h)

Hi :

Enthalpy of air at inlet (kJ/kg)

Hd :

Enthalpy of air at dryer (kJ/kg)

mf :

Mass flow rate of dry solid (kg/h)

Xi :

Moisture content of product at inlet, dry basis (kg water/kg)

Xo :

Moisture content of product at outlet, dry basis (kg water/kg)

ωo :

Specific humidity at outlet

ωi :

Specific humidity at inlet

q:

Volume of air supplied for drying (m3/h)

Tai :

Inlet hot air temperature (°C)

Tatm :

Atmospheric temperature (°C)

ΔT:

Difference in temperature (°C)

Cg :

Specific heat of air (kJ/kg °C)

mv :

Mass of moisture removed (kg)

t:

Residence time (h)

Hd :

Absolute humidity of air entering the dryer at the point of adiabatic saturation (kg/kg of dry air)

Hi :

Absolute humidity of air at the inlet of the dryer (kg/kg of dry air)

Vat :

Inlet air velocity (m/s)

D:

Diameter of the rotary air dryer (m)

N:

Speed of the rotary air dryer (RPM)

W1 :

Constant weight of the dried samples (kg)

W2 :

Dry matter of the pellets (kg)

w:

Weight of the market waste loaded into the inner shell (kg)

Psd :

Outer shell diameter of the rotary dryer (m)

P:

Power of blower (kW)

p:

Blower operating pressure (N/mm2)

References

  1. Iguaz, A., Esnoz, A., Martínez, G., López, A., Vírseda, P.: Mathematical modelling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer. J. Food Eng. 59(2–3), 151–160 (2003). https://doi.org/10.1016/s0260-8774(02)00451-x

    Article  Google Scholar 

  2. Youcai, Z.: Municipal solid waste incineration process and generation of bottom ash and fly ash. Pollution control and resource recovery: Municipal Solid Wastes Incineration (2017). https://doi.org/10.1016/b978-0-12-812165-8.00001-9

    Article  Google Scholar 

  3. Berardi, P., Almeida, M., Dias, J., Lopes, M.: Portugal lacks refuse derived fuel production from municipal solid waste. In: Wastes—Solutions, Treatments and Opportunities II (2017). https://doi.org/10.1201/9781315206172-33

  4. Mu’min, G.F., Prawisudha, P., Zaini, I.N., Aziz, M., Pasek, A.D.: Municipal solid waste processing and separation employing wet torrefaction for alternative fuel production and aluminum reclamation. Waste Manag. 67, 106–120 (2017). https://doi.org/10.1016/j.wasman.2017.05.022

    Article  Google Scholar 

  5. Mallick, D., Buragohain, B., Mahanta, P., Moholkar, V.S.: Gasification of mixed biomass: analysis using equilibrium, semi-equilibrium, and Kinetic models. Energy Environ. Sustain. (2017). https://doi.org/10.1007/978-981-10-7335-9_9

    Article  Google Scholar 

  6. Zhu, J., Wan, L., Chen, H., Zhu, Y., Yang, L.: Pilot Test of co-pyrolysis characteristics of wet sewage sludge and sawdust in an external heating moving bed. Energy Procedia. 105, 570–575 (2017). https://doi.org/10.1016/j.egypro.2017.03.358

    Article  Google Scholar 

  7. Peng, C., Zhai, Y., Zhu, Y., Wang, T., Xu, B., Wang, T., Li, C., Zeng, G.: Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment. J. Clean. Prod. 166, 114–123 (2017). https://doi.org/10.1016/j.jclepro.2017.07.108

    Article  Google Scholar 

  8. Phillips, J., Huhnke, R., Fermentation, H.A.S.: A microbial conversion process of gaseous substrates to various products. Fermentation 3(2), 28 (2017). https://doi.org/10.3390/fermentation3020028

    Article  Google Scholar 

  9. Laskri, N., Hamdaoui, O., Nedjah, N.: Anaerobic digestion of waste organic matter and biogas production. J. Clean Energy Technol. 3(3), 181–184 (2015). https://doi.org/10.7763/jocet.2015.v3.192

    Article  Google Scholar 

  10. Tua, C., Nessi, S., Rigamonti, L., Dolci, G., Grosso, M.: Packaging waste prevention in the distribution of fruit and vegetables: an assessment based on the life cycle perspective. Waste Manag. Res. 35(4), 400–415 (2017). https://doi.org/10.1177/0734242x16688259

    Article  Google Scholar 

  11. Hafeezgayasudin, K., Naveen, R., Revankar, P.P.: Experimental studies on solar dehydrator, greenhouse dehydrator and open drying. In: 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), (2016). https://doi.org/10.1109/iceets.2016.7582890

  12. Pavani, K.V., & Aduri, P.: Effect of packaging materials on retention of quality characteristics of dehydrated green leafy vegetables during storage. Int. J. Environ. Agric. Biotechnol. 3(1), 256–259 (2018). https://doi.org/10.22161/ijeab/3.1.32

    Article  Google Scholar 

  13. Srivastava, N.S.L., Narnaware, S.L., Makwana, J.P., Singh, S.N., Vahora, S.: Investigating the energy use of vegetable market waste by briquetting. Renewable Energy. 68, 270–275 (2014). https://doi.org/10.1016/j.renene.2014.01.047

    Article  Google Scholar 

  14. Yank, A., Ngadi, M., Kok, R.: Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenerg. 84, 22–30 (2016). https://doi.org/10.1016/j.biombioe.2015.09.015

    Article  Google Scholar 

  15. Srivastava, N.S.L., Vyas, D.K.: Pre-heating and briquetting of selected crop residues. Thesis report of SPRERI Vallabh Vidyanagar, Report Submitted to ICAR, (2010)

  16. Edrisi, S.A., Abhilash, P.C.: Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 54, 1537–1551 (2016). https://doi.org/10.1016/j.rser.2015.10.050

    Article  Google Scholar 

  17. Motovilov, K.Y., Motovilov, O.K., Golub, O.V.: Current conditions and development priorities of the fruit and vegetables and processing industry. Food Ind. (2017). https://doi.org/10.29141/2500-1922-2017-2-3-6

    Article  Google Scholar 

  18. Kalamdhad, A.S., Kazmi, A.A.: Rotary drum composting of different organic waste mixtures. Waste Manag. Res. 27(2), 129–137 (2009). https://doi.org/10.1177/0734242x08091865

    Article  Google Scholar 

  19. Abbasfard, H., Rafsanjani, H.H., Ghader, S., Ghanbari, M.: Mathematical modeling and simulation of an industrial rotary dryer: a case study of ammonium nitrate plant. Powder Technol. 239, 499–505 (2013). https://doi.org/10.1016/j.powtec.2013.02.037

    Article  Google Scholar 

  20. Hegde, V.N., Hosur, V.S., Rathod, S.K., Harsoor, P.A., Narayana, K.B.: Design, fabrication and performance evaluation of solar dryer for banana. Energy Sustain. Soc. (2015). https://doi.org/10.1186/s13705-015-0052-x

    Article  Google Scholar 

  21. Keey, R.B., Langrish, T.A.G., Walker, J.C.F.: Kiln-Drying of lumber. Springer Ser. Wood Sci. (2000). https://doi.org/10.1007/978-3-642-59653-7

    Article  Google Scholar 

  22. Mujumdar, A.: Handbook of Industrial Drying (4th ed.). CRC press, Boca Raton (2014). https://doi.org/10.1201/b17208

    Book  Google Scholar 

  23. Mahmoud, A., Arlabosse, P., Fernandez, A.: Application of a thermally assisted mechanical dewatering process to biomass. Biomass Bioenerg. 35(1), 288–297 (2011). https://doi.org/10.1016/j.biombioe.2010.08.037

    Article  Google Scholar 

  24. Mulyadi, M., Marhatang, Nur, R.: The forced convection biomass and solar collector dryer for drying seaweed using exhaust fan. In: AIP Conference Proceedings. AIP Publishing, Melville (2018). https://doi.org/10.1063/1.5043023

    Chapter  Google Scholar 

  25. Dhanushkodi, S., Wilson, V.H., Sudhakar, K.: Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer. Resour. Efficient Technol. 3(4), 359–364 (2017). https://doi.org/10.1016/j.reffit.2016.12.002

    Article  Google Scholar 

  26. Liu, Y., Aziz, M., Kansha, Y., Bhattacharya, S., Tsutsumi, A.: Application of the self-heat recuperation technology for energy saving in biomass drying system. Fuel Process. Technol. 117, 66–74 (2014). https://doi.org/10.1016/j.fuproc.2013.02.007

    Article  Google Scholar 

  27. Singh, R.N.: Equilibrium moisture content of biomass briquettes. Biomass Bioenerg. 26(3), 251–253 (2004). https://doi.org/10.1016/s0961-9534(03)00082-5

    Article  Google Scholar 

  28. Arruda, E.B., Façanha, J.M.F., Pires, L.N., Assis, A.J., Barrozo, M.A.S.: Conventional and modified rotary dryer: comparison of performance in fertilizer drying. Chem. Eng. Process. 48(9), 1414–1418 (2009). https://doi.org/10.1016/j.cep.2009.07.007

    Article  Google Scholar 

  29. Prasad, J., Vijay, V.K.: Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier. Renew. Energy 30(14), 2097–2109 (2005). https://doi.org/10.1016/j.renene.2005.02.007

    Article  Google Scholar 

  30. Lu, Z., Wang, M., Jia, W., Zhao, Z.: Effects of hot air temperature on drying properties of biomass brick during heat treatment. BioResources (2017). https://doi.org/10.15376/biores.12.2.3236-3249

    Article  Google Scholar 

  31. Luk, H.T., Lam, T.Y.G., Oyedun, A.O., Gebreegziabher, T., Hui, C.W.: Drying of biomass for power generation: a case study on power generation from empty fruit bunch. Energy 63, 205–215 (2013). https://doi.org/10.1016/j.energy.2013.10.056

    Article  Google Scholar 

  32. Bala, B.K., Ashraf, M.A., Uddin, M.A., Jnajai, S.: Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. J. Food Process. Eng. 28(6), 552–566 (2005). https://doi.org/10.1111/j.1745-4530.2005.00042.x

    Article  Google Scholar 

  33. Klavina, K., Cinis, A., Zandeckis, A.: Experimental study on the effects of air velocity, temperature and depth on low-temperature bed drying of forest biomass residue. Energy Procedia. 72, 42–48 (2015). https://doi.org/10.1016/j.egypro.2015.06.007

    Article  Google Scholar 

  34. Slim, R., Zoughaib, A., Clodic, D.: Modeling of a solar and heat pump sludge drying system. Int. J. Refrig. 31(7), 1156–1168 (2008). https://doi.org/10.1016/j.ijrefrig.2008.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthipan Jayaram.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaram, P., Bhattu, N.R., Jayaraman, J. et al. Experimental Investigation on the Treatment of Mixed Market Waste by a Novel Rotary Air Dryer. Waste Biomass Valor 11, 2153–2162 (2020). https://doi.org/10.1007/s12649-018-0516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0516-2

Keywords

Navigation