Skip to main content
Log in

Preparation and electrochemical properties of self-doped nitrogen porous carbon derived from Zn-MOFs

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are network-like frameworks composed of transition metals and organic ligands containing oxygen or nitrogen. Because of its highly controllable composition and ordered porous structure, it has broad application prospects in the field of material synthesis. In this work, Zn4(PYDC)4(DMF)2∙3DMF (ZPD) was synthesized via a hydrothermal method. Self-doped nitrogen porous carbon ZPDC-T was then prepared by one-step carbonization. The results show that the self-doped nitrogen porous carbon ZPDC-850 has a micro/mesoporous structure with a specific surface area of 1520 m2 g−1 and a nitrogen content of 6.47%. When a current density is 1.0 A g−1, its specific capacitance is 265.1 F g−1. After 5000 times of constant current charging and discharging, the capacitance retention rate was 79.2%. Thus, self-doped nitrogen porous carbon ZPDC-850 exhibits excellent electrochemical properties and good cyclic stability. Therefore, the self-doped nitrogen porous carbon derived from MOFs can be a promising electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou K, Wang H, Jiu J, Liu J, Yan H (2018) Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem Eng J 345:290. https://doi.org/10.1016/j.cej.2018.03.175

    Article  CAS  Google Scholar 

  2. Li K, Zhang W, Zhao Z, Zhao Z, Chen X, Kong L (2018) Facile preparation of novel hierarchically porous carbon at the molecular level for supercapacitor electrode application. NANO 13:08. https://doi.org/10.1142/S1793292018500911

    Article  CAS  Google Scholar 

  3. Sun N, Li Y, Zhang Q, Hao X (2018) Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiQ3-Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregioons. J Mater Chem C 6:10693. https://doi.org/10.1039/C8TC03481H

    Article  CAS  Google Scholar 

  4. Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y, Li L, Shen Y, Liu Y, Nan C (2018) Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 9:1813. https://doi.org/10.1038/s41467-018-04189-6

    Article  CAS  Google Scholar 

  5. Zhang S, Yin B, Wang Z, Gu D (2017) A low-cost wearable yarn supercapacitor constructed by a highly bended polyester fiber electrode and flexible film. J Mater Chem A 5:15144. https://doi.org/10.1039/C7TA03697C

    Article  CAS  Google Scholar 

  6. Balamurugan J, Nguyen TT, Aravindan V, Kim NH, Lee JH (2018) Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life. Adv Funct Mater 28(44):1804663. https://doi.org/10.1002/adfm.201804663

    Article  CAS  Google Scholar 

  7. Yin B, Wang Z, Zhang S, Liu C, Ren Q, Ke K (2016) In situ growth of free-standing all metal oxide asymmetric supercapacitor. ACS Appl Mater Interfaces 8:26019. https://doi.org/10.1021/acsami.6b08037

    Article  CAS  Google Scholar 

  8. Liu L, Xie ZH, Deng QF, Hou XX, Yuan ZY (2017) One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO2 capture. J Mater Chem A 5:418. https://doi.org/10.1039/C6TA09782K

    Article  CAS  Google Scholar 

  9. Perazzolo V, Gra˛dzka E, Durante C, Pilot R, Vicentini N, Rizzi GA, Granozzi G, Gennaro A (2016) Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons. Electrochim Acta 197:251. https://doi.org/10.1016/j.electacta.2016.02.025

    Article  CAS  Google Scholar 

  10. Wang C, Liu T, Nori-based N (2017) O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J Alloy Compd 696:42. https://doi.org/10.1016/j.jallcom.2016.11.206

    Article  CAS  Google Scholar 

  11. Liu D, Zeng C, Qu D, Tang H, Li Y, Su BL, Qu D (2016) Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. J Power Sources 321:143. https://doi.org/10.1016/j.jpowsour.2016.04.129

    Article  CAS  Google Scholar 

  12. Chen X, Chen C, Zhang Z, Xie D (2013) Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J Mater Chem A 1:10903. https://doi.org/10.1039/C3TA12328F

    Article  CAS  Google Scholar 

  13. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430. https://doi.org/10.1039/C1JM00049G

    Article  CAS  Google Scholar 

  14. Wei T, Wei X, Gao Y, Li H (2015) Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta 169:186. https://doi.org/10.1016/j.electacta.2015.04.082

    Article  CAS  Google Scholar 

  15. Liu JJ, Deng YF, Li XH, Wang LF (2015) Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng 4:177. https://doi.org/10.1021/acssuschemeng.5b00926

    Article  CAS  Google Scholar 

  16. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137. https://doi.org/10.1016/j.biortech.2015.07.100

    Article  CAS  Google Scholar 

  17. Guo R, Li J, Jia Y, Xin F, Sun J, Dang L, Liu Z, Lei Z (2019) Nitrogen-doped carbon sheets coated on CoNiO2@textile carbon as bifunctional electrodes for asymmetric supercapacitors. J Mater Chem A 7:4165. https://doi.org/10.1039/C9TA00014C

    Article  CAS  Google Scholar 

  18. Jin H, Feng X, Li J, Li M, Xia YZ, Yuan Y, Yang C, Dai B, Lin Z, Wang J, Wang S, Lu J (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem 58:2397. https://doi.org/10.1002/anie.201813686

    Article  CAS  Google Scholar 

  19. Liu D, Yu S, Shen YL, Chen H, Shen ZH, Zhao SY, Yu YM, Bao BF (2015) Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials. Ind Eng Chem Res 54:12570. https://doi.org/10.1021/acs.iecr.5b02507

    Article  CAS  Google Scholar 

  20. Hu Z, Li S, Cheng P, Yu W, Li R, Shao X, Lin W, Yuan D (2016) N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J Mater Sci 51:2627. https://doi.org/10.1007/s1085

    Article  CAS  Google Scholar 

  21. Dou S, Huang X, Ma Z, Wu J, Wang S (2015) A simple approach to the synthesis of BCN graphene with high capacitance. Nanotechnology 26:045402. https://doi.org/10.1088/0957-4484/26/4/045402

    Article  CAS  Google Scholar 

  22. Xiao S, Pan D, Liang R, Dai WR, Zhang Q, Zhang G, Su C, Li HX, Chen W (2018) Bimetal MOF derived mesocrystal ZnCo2O4, on rGO with High performance in visible-light photocatalytic NO oxidization. Appl Catal B: Environ 236:304. https://doi.org/10.1016/j.apcatb.2018.05.033

    Article  CAS  Google Scholar 

  23. Sun W, Cai C, Tang X, Lv L, Wang Y (2018) Carbon coated mixed-metal selenide microrod: bimetal-organic-framework derivation approach and applications for lithium-ion batteries. Chem Eng J 351:169. https://doi.org/10.1016/j.cej.2018.06.093

    Article  CAS  Google Scholar 

  24. Guo B, Yang Y, Hu Z, An Y, Zhang Q, Yang X, Wang X, Wu H (2017) Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor. Electrochim Acta 223:74. https://doi.org/10.1016/j.electacta.2016.12.012

    Article  CAS  Google Scholar 

  25. Tong Y, Ji D, Wang P, Zhou H, Akhtar K, Shen X, Zhang J, Yuan A (2017) Nitrogen-doped carbon composites derived from 7,7,8,8-tetracyano-quinodimethane-based metal–organic frameworks for supercapacitors and lithium-ion batteries. RSC Adv 7:25182. https://doi.org/10.1039/C7RA02543B

    Article  CAS  Google Scholar 

  26. Bo L, Hiroshi S, Jiang HL, Zhang XB, Xu Q (2010) Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456. https://doi.org/10.1016/j.carbon.2009.09.061

    Article  CAS  Google Scholar 

  27. Jeon JW, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, McGrail BP, Nune SK (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6:7214. https://doi.org/10.1021/am500339x

    Article  CAS  Google Scholar 

  28. Jiang H, Liu B, Lan Y, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133:11854. https://doi.org/10.1021/ja203184k

    Article  CAS  Google Scholar 

  29. Ahrenholtz SR, Landaverde-Alvarado C, Whiting M, Lin S, Slebodnick C, Marand E, Morris AJ (2015) Thermodynamic study of CO2 sorption by polymorphic microporous MOFs with open Zn(ii) coordination sites. Inorg Chem 4328:54. https://doi.org/10.1021/ic503047y

    Article  CAS  Google Scholar 

  30. Liu F, Xiong W, Liu J, Cheng Q, Cheng G, Shi L, Zhang Y (2018) Novel amino-functionalized carbon material derived from metal organic framework: a characteristic adsorbent for U(VI) removal from aqueous environment. Colloids Surf A 556:72. https://doi.org/10.1016/j.colsurfa.2018.08.009

    Article  CAS  Google Scholar 

  31. Hanappi MFYM, Deraman M, Suleman M, Nor NSM, Sazali NES, Hamdan E, Tajuddin NSM, Basri NH, Jasni MRM, Othman MAR (2017) Influence of aqueous KOH and H2SO4 electrolytes ionic parameters on the performance of carbon-based supercapacitor electrodes. Funct Mater Lett 10:1. https://doi.org/10.1142/S1793604717500138

    Article  CAS  Google Scholar 

  32. Huang S, Zhang J, Li P, Wang W, Feng H, Luo HM (2018) Preparation of metal-organic framework-derived porous carbon and study of its supercapacitive performance in potassium citrate electroyte. Electrochim Acta 284:328. https://doi.org/10.1016/j.electacta.2018.07.102

    Article  CAS  Google Scholar 

  33. Liu X, Zhou W, Yang L, Zhang Z, Ke Y, Chen S (2015) Nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions. J Mater Chem A 3:8840. https://doi.org/10.1039/C5TA01209K

    Article  CAS  Google Scholar 

  34. Lei P, Li XX, Wang YX, Liu JL, Tian W, Ning H, Wu MB (2018) 3D interconnected honeycomb-like and high rate performance porous carbons from petroleum asphalt for supercapacitors. Appl Surf Sci 444:739. https://doi.org/10.1016/j.apsusc.2018.03.122

    Article  CAS  Google Scholar 

  35. Zhang Y, Zhu J, Ren H, Bi Y, Zhang L (2017) Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance. Chin Chem Lett 28:935. https://doi.org/10.1016/j.cclet.2017.01.023

    Article  CAS  Google Scholar 

  36. Tian J, Zhang H, Liu Z, Qin G, Li Z (2018) One-step synthesis of 3D sulfur-doped porous carbon with multilevel pore structure for high-rate supercapacitors. Int J Hydrogen Energy 43:1596. https://doi.org/10.1016/j.ijhydene.2017.11.091

    Article  CAS  Google Scholar 

  37. Zheng K, Li Y, Zhu M, Yu X, Zhang M, Shi L, Chen J (2017) The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. J Power Sources 366:270. https://doi.org/10.1016/j.jpowsour.2017.09.034

    Article  CAS  Google Scholar 

  38. Hu LT, Hou JX, Ying M, Li HQ, Zhai TY (2016) Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J Mater Chem A 4:15006. https://doi.org/10.1039/C6TA06337C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the fund of National Nature Science Foundation of China (Nos. 21667017 and 21666018) and Gansu Province University Fundamental Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heming Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, C., Wang, Q. et al. Preparation and electrochemical properties of self-doped nitrogen porous carbon derived from Zn-MOFs. Carbon Lett. 30, 315–324 (2020). https://doi.org/10.1007/s42823-019-00100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00100-5

Keywords

Navigation