Skip to main content
  • Original Article
  • Published:

Ranking larch genotypes with the Rigidimeter: relationships between modulus of elasticity of standing trees and of sawn timber

Efficacité du Rigidimètre pour la mesure en routine du module d’élasticité des arbres sur pied

Abstract

  • • Direct assessment of modulus of elasticity (MOE) on standing trees is attractive for breeders to evaluate genotypes prior to selection: this can be done using the Rigidimeter, a bending-based measurement device.

  • • In this study, we tested its reliability to properly rank genotypes by relating trunk MOE with MOEs estimated with a vibrating analysis system (Bing) on different types of conditioned wood specimens from the same trees (boards and standardised 2×2×30 cm-clear-wood specimens). One hundred and ten trees from different genotypes of hybrid larch (Larix × eurolepis) were tested.

  • • Mean trunk MOE was 7 300 MPa with a similar value obtained for sawn boards. Clear-wood specimens MOE increased from pith to bark from less than 6 000 MPa to nearly 9 000 MPa. Moderate correlations (r = 0.48–0.61) were found at the individual tree level between trunk MOE and MOE of wood samples.

  • • Single specimen MOE was shown to be strongly related to a linear combination of trunk MOE and sample position.

  • • At the genotype mean level, trunk MOE was highly correlated with wood samples MOE (r = 0.80–0.91). Ranking of genotypes based on trunk MOE was mostly consistent with that based on standardised specimens.

  • • It was concluded that besides other operational advantages which are discussed, the Rigidimeter is a valuable tool for breeders to routinely evaluate and rank genotypes for stiffness prior to further selection.

Résumé

  • • L’évaluation directe du module d’élasticité (MOE) sur arbre debout intéresse les améliorateurs pour l’évaluation de la valeur des génotypes avant sélection : le Rigidimètre permet cette mesure sur arbre debout grâce à une mesure de la déviation du tronc sous l’effet d’une contrainte connue.

  • • Dans cette étude, nous avons testé sa fiabilité en comparant ce module avec celui obtenu sur divers échantillons de bois séchés, grâce à un système d’analyse vibratoire (Bing). Cent dix arbres, issus d’un test de descendances de mélèze hybride (Larix × eurolepis), ont été analysés. Les pièces de bois comprenaient pour chaque arbre : (i) une planche centrale brute (4 cm d’épaisseur et 80 cm de longueur) tirée du billon de pied, (ii) la même planche délignée, et (iii) des éprouvettes standardisées (2 × 2 × 30 cm).

  • • Le module de tronc sur pied atteignait en moyenne 7 300 MPa (2 180-12 174 MPa) avec une amplitude au niveau familial de 5 052 MPa à 8 948 MPa. Le MOE des planches était légèrement plus faible (7 256-7 182 MPa). Celui des éprouvettes normalisées variait de moins de 6 000 MPa au niveau de la moëlle à 9 000 MPa vers l’écorce. Des corrélations modérées (0,48–0,61) ont été trouvées au niveau individuel entre MOE sur arbre debout et MOE des échantillons de bois.

  • • Cependant, il semble possible d’estimer le module des éprouvettes normalisées à partir entre autre du module des arbres sur pied et de la position de l’échantillon dans l’arbre.

  • • Au niveau génotypique, le module de tronc était très fortement corrélé aux MOE des échantillons (0,80–0,91) et le classement des génotypes est apparu fiable.

  • • Outre ses autres avantages (e.g. mise en place rapide, évaluation non destructive), le Rigidimètre est donc un outil bien adapté aux besoins des améliorateurs pour évaluer et classer leurs génotypes pour leur rigidité.

References

  • Baillères H., Demay L., Calchera G., and Vernay M., 1988. Mechanical grading of French Guianan structural timber using three nondestructive techniques. Bois For. Trop. 257: 47–62.

    Google Scholar 

  • Brancheriau L. and Baillères H., 2002. Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci. Technol. 36: 347–365.

    Article  CAS  Google Scholar 

  • Brashaw B., Wang X., Ross R.J., and Pellerin R.F., 2004. Relationship between stress wave velocities of green and dry veneer. For. Prod. J. 54: 85–89.

    Google Scholar 

  • Carrington H., 1922. The elastic constants of spruce as affected by moisture content. Aeron. J. 26: 462.

    Google Scholar 

  • Carter P., Wang X., Ross R.J., and Briggs D., 2005. NDE of logs and standing trees using new acoustic tools technical application and results. In: Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, May 2–4, 2005. Eberswalde, Germany, Shaker Verlag, Aachen, Germany, pp. 161–169.

    Google Scholar 

  • Grabianowski M., Manley B., and Walke J.C.F., 2006. Acoustic measurements on standing trees, logs and green lumber. Wood Sci. Technol. 40: 205–216.

    Article  CAS  Google Scholar 

  • Isik F. and Li B., 2003. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Can. J. For. Res. 33: 3426–2435.

    Article  Google Scholar 

  • Jacques D., Marchal M., and Curnel Y., 2004. Relative efficiency of alternative methods to evaluate wood stiffness in the frame of hybrid larch (Larix × eurolepis Henry) clonal selection. Ann. For. Sci. 61: 35–43.

    Article  Google Scholar 

  • Koizumi A. and Ueda K., 1986. Estimation of the mechanical properties of standing trees by bending tests. I. Test method to measure the stiffness of a tree trunk, Mokuzai Gakkaishi 32: 669–676.

    Google Scholar 

  • Kumar S., 2004. Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine, Can. J. For. Res. 34: 2601–2610.

    Article  Google Scholar 

  • Lasserre J.P., Mason E.G., and Watt M.S., 2007. Assessing corewood acoustic velocity and modulus of elasticity with two impact based instruments in 11-year-old trees from a clonal-spacing experiment of Pinus radiata D. Don. For. Ecol. Manage. 239: 217–221.

    Article  Google Scholar 

  • Launay J., Ivkovitch M., Pâques L.E., Bastien C., Higelin P., and Rozenberg P., 2002. Rapid measurement of trunk MOE on standing trees using rigidimeter. Ann. For. Sci. 59: 465–469.

    Article  Google Scholar 

  • Launay J., Mudry M., Gilletta F., 1986. Étude expérimentale de l’influence du taux d’humidité sur l’élasticité du bois. CR 19, Colloque du GFR, Cepadues Toulouse, pp. 443–452.

  • Launay J., Rozenberg P., Pâques L.E., and Dewitte J.M., 2000. A new experimental device for rapid measurement of the trunk equivalent modulus of elasticity on standing trees. Ann. For. Sci. 57: 351–359.

    Article  Google Scholar 

  • Lindström H., Harris P., and Nakada R., 2002. Methods for measuring stiffness of young trees. Holz Roh-Werkst. 60: 165–174.

    Article  Google Scholar 

  • Nicholls J.W.P., 1985. A new method for determining wood density in the standing tree. Aust. For. Res. 15: 195–206.

    Google Scholar 

  • Pâques L.E., 2002. Larch tree improvement programme in France. In: Proc. International Symposium ‘Improvement of larch for better growth, stem form and wood quality’, Gap, INRA, September 16–21.

  • Oliveira R.G.F. de, Candian M., Lucchette F.F., Salgon J.L., and Sales A., 2005. Moisture content effect on ultrasonic velocity in Goupia glabra. Mater. Res. 8: 11–14.

    Google Scholar 

  • R Development Core Team, 2006. R: A language and environment for statistical computing, Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Ross R.R. and Pellegrin R.F., 1994. Nondestructive testing for assessing wood members in structures: a review. General technical report FPL-GTR-70, Forest Product Laboratory, US Forest Service.

  • Ross R.J., Willits S.W., Segen W.V., Black T., Brashaw B.K., and Pellerin R.F., 1999. A stress wave based approach to NDE of logs for assessing potential veneer quality. Part 1. Small-diameter ponderosa pine. For. Prod. J. 49: 60–62.

    Google Scholar 

  • Wang X., Ross R.J., Green D.W., Brashaw B.K., Englund K., and Wolcott M., 2004. Stress wave sorting of red maple logs for structural quality. Wood Sci. Technol. 37: 531–537.

    Article  CAS  Google Scholar 

  • Wang X., Ross R.J., Mattson J.A., Erickson J.R., Forsman J.W., Geske E.A., and Wehr M.A., 2002. Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. For. Prod. J. 52: 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc E. Pâques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pâques, L.E., Rozenberg, P. Ranking larch genotypes with the Rigidimeter: relationships between modulus of elasticity of standing trees and of sawn timber. Ann. For. Sci. 66, 414 (2009). https://doi.org/10.1051/forest/2009011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009011

Keywords

Mots-clés