Skip to main content
Log in

Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

Aspects of the development of nanotechnology in pharmacy using magnetic nanoparticles of ferrite materials were considered. Interest in these objects, as well as fullerenes and carbon nanotubes, is explained by the potential use of magnetic nanoparticles in catalysis, biomedicine, magnetic resonance imaging, magnetic separation and visualization, and hyperthermia of malignant neoplasms. The general characterization of oxide magnetic materials is given in the context of the feasibility of their use in magnetic drug delivery systems. The known synthetic methods for magnetic nanoparticles are systematized. Taking into account the initial stage of development of this direction, the actual material on the development of synthesis conditions, methods for the analysis of magnetic nanoparticles, and drug delivery systems as a whole is of scientific and practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bialojan, S., Nanotechnology in Medicine Mannheim, Germany Ernst Young, 2008.

    Google Scholar 

  2. Gil, P., Huhn, D., and Mercato, L., Pharm. Res., 2010, vol. 62, no. 2, p. 115.

    Google Scholar 

  3. Amirfazli, A. Nat. Nanotechnol., 2007, no. 22, p. 21.

    Google Scholar 

  4. Emerich, D. and Thanos, C., J. Drug Targeting, 2007, vol. 15, no. 3, p. 163.

    CAS  Google Scholar 

  5. Koppisetti, V. and Sahiti, B., Int. J. Drug Dev. Res., 2011, vol. 3, no. 1, p. 260.

    CAS  Google Scholar 

  6. Krishnan, K., IEEE Trans. Magn., 2010, vol. 46, no. 7, p. 2523.

    CAS  Google Scholar 

  7. Sakamoto, J., Godin, B., Blanco, E., Serda, R., Grattoni, A., and Van de Ven, A., Pharm. Res., 2010, vol. 62, no. 2, p. 57.

    CAS  Google Scholar 

  8. Vizirianakis, I., Nanomedicine, 2011, no. 7, p. 11.

    CAS  Google Scholar 

  9. Zahn, M., J. Nanopart. Res., 2001, no. 3, p. 73.

    CAS  Google Scholar 

  10. Indira, T.K. and Lakhmi, P.K., Int. J. Pharm. Sci. Nanotechnol., 2010, vol. 3, no. 3, p. 1035.

    CAS  Google Scholar 

  11. Saiyed, Z., Telang, S., and Ramchand, C., Biomagnet. Res. Technol., 2003, vol. 1, no. 2, p. 1021.

    Google Scholar 

  12. Berkovskii, B.M., Medvedev, V.F., and Krakov, M.S., Magnitnye zhidkosti (Magnetic Fluids), Moscow Khimiya, 1989.

    Google Scholar 

  13. Blum, E.Ya., Maiorov, M.M., and Tsebers, A.O., Magnitnye zhidkosti (Magnetic Fluids), Riga Zinatne, 1989.

    Google Scholar 

  14. Taketomi, S. and Tikazumi, S., Jisei Ryutai (Magnetic Fluid), Tokyo Nikkan Kogyo, 1988.

    Google Scholar 

  15. Vol’ter, E.R. and Glushchenko, N.N., in Tr. IX Mezhdunar. Plesskoi konferentsii po magnitnym zhidkostyam (Proc. IX Int. Pless Conf. on Magnetic Fluids), Ivanovo, 2000, p. 349.

    Google Scholar 

  16. Cherkasova, O.G., Doctoral (Farm.) Dissertation, Moscow First Moscow State Med. Univ., 1993.

    Google Scholar 

  17. Rymarchuk, V.I., Malenkov, A.G., and Radkevich, L.A., Biofizika, 1990, vol. 35, no. 1, p. 145.

    CAS  Google Scholar 

  18. Barybin, A.S., Kulemin, V.V., Nikolaenkov, Yu.V., and Orlov, D.V., Sov. Med., 1983, no. 10, p. 58.

    Google Scholar 

  19. Zavadskii, S.P., Kharitonov, Yu.Ya., and Cherkasova, O.G., in Tr. X Mezhdunar. Plesskoi konferentsii po magnitnym zhidkostyam (Proc. X Int. Pless Conf. on Magnetic Fluids), Ivanovo, 2002, p. 336.

    Google Scholar 

  20. Vedernikova, I.A., Levitin, E.Ya., and Onoprienko, T.A., in Tr. XII Mezhdunar. Plesskoi konferentsii po magnitnym zhidkostyam (Proc. XII Int. Pless Conf. on Magnetic Fluids), Ivanovo, 2006, p. 296.

    Google Scholar 

  21. Tskitishvili, T., DentArt, 2007, no. 2, p. 9.

    Google Scholar 

  22. Belov, K.P., Fizika i khimiya ferritov (Physics and Chemistry of Ferrites), Moscow Mosk. Gos. Univ., 1973.

    Google Scholar 

  23. Belov, K.P., Magnitnye i kristallokhimicheskie issledovaniya ferritov (Magnetic and Crystal Chemical Study of Ferrites), Moscow Mosk. Gos. Univ., 1971.

    Google Scholar 

  24. Sitidze, Yu. and Sato, Kh., Ferrity (Ferrites), Moscow Mir, 1964.

    Google Scholar 

  25. Yahya, N., Mohamad, Nor., Aripin, A., Aziz, A., Daud, H., Zaid, H., Lim Kean Pah., and Maarof, N., Am. J. Eng. Appl. Sci., 2008, vol. 1, no. 1, p. 54.

    Google Scholar 

  26. Mahajan, R.P., Patankar, K.K., Kothale, M.B., and Patil, S.A., Bull. Mater. Sci., 2000, vol. 23, no. 4, p. 273.

    CAS  Google Scholar 

  27. Zhang, H., Liu, Y., and Sun, S., Front. Phys. China, 2010, vol. 5, no. 4, p. 347.

    CAS  Google Scholar 

  28. Yener, D. and Giesche, H., J. Am. Ceram. Soc., 2001, vol. 84, no. 9, p. 1987.

    CAS  Google Scholar 

  29. Baranov, D.A. and Gubin, S.P., Nanosistemy, 2009, vol. 1, nos. 1–2, p. 129.

    Google Scholar 

  30. Pelens’kii, R., Teoretichna Elektrotekhnika, 2010, no. 61, p. 26.

    Google Scholar 

  31. Zheng, M., Wu, X.C., Zou, B.S., and Wang, Y.J., J. Magn. Magn. Mater., 1998, no. 183, p. 152.

    CAS  Google Scholar 

  32. Yuan, H., Wang, Y., Zhou, S., Liu, L., Chen, X., Lou, S., Yuan, R., Hao, Y., and Low, N., Nanoscale Res. Lett., 2010, no. 5, p. 1817.

    CAS  Google Scholar 

  33. Shannon, A.M., Cahill, C.L., and Carpenter, E.E., J. Appl. Phys., 2004, vol. 95, no. 11, p. 6392.

    Google Scholar 

  34. Battle, J., Clark, T., and Evans, B., J. Phys. IV, 1997, no. 7, p. 257.

    Google Scholar 

  35. Westrum, E. and Gronvold, F., J. Chem. Thermodyn., 1969, no. 1, p. 543.

    CAS  Google Scholar 

  36. Li, X., Xu, C., and Han, X., Nanoscale Res. Lett., 2010, no. 1, p. 1039.

    Google Scholar 

  37. Kalska-Szostkoa, B., Cydzika, M., Satulab, D., and Giersigc, M., Acta Phys. Pol., A, 2011, vol. 119, no. 1, p. 15.

    Google Scholar 

  38. Ostafiychuk, B.K., Kopayev, O.V., Gasyuk, I.M., and Paschenko, V.P., Funct. Mater., 2001, vol. 8, no. 3, p. 502.

    CAS  Google Scholar 

  39. Kittel, C., Rev. Mod. Phys., 1949, vol. 21, p. 541.

    Google Scholar 

  40. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Usp. Khim., 2005, no. 74, no. 6, p. 539.

    Google Scholar 

  41. Ol’khovik, L.P., Borisova, N.A., Sizova, Z.I., and Shurinova, E.V., Abstracts of Papers, XVIII shkoly-seminara: Novye magnitnye materialy mikroelektroniki (XVIII Seminar on New Magnetic Materials for Microelectronics), Moscow Mosk. Gos. Univ., 2002.

    Google Scholar 

  42. Golubenko, Z.V., Murakhovskii, A.A., Ol’khovik, L.P., and Sizova, Z.I., Abstracts of Papers, V Mezhdunar. konf.: Fizicheskie yavleniya v tverdykh telakh (V Int. Conf. on Physical Phenomena in Solids), Kharkov: Kharkov. Gos. Univ., 2001, p. 25.

    Google Scholar 

  43. Goldman, A., Modern Ferrite Technology, New York: Springer, 2006.

    Google Scholar 

  44. Kamzin, A.S., Ol’khovik, L.P., and Rozenbaum, V.L., Pis’ma Zh. Eksp. Teor. Fiz., 1995, vol. 61, no. 11, p. 916.

    CAS  Google Scholar 

  45. Kamzin, A.S., Rozenbaum, V.L., Ol’khovik, L.P., and Kovtun, E.D., J. Magn. Magn. Mater., 1996, vol. 161, p. C. 139.

    CAS  Google Scholar 

  46. Kamzin, A.S., Ol’khovik, L.P., and Sizova, Z.I., Visnik Khersonsk. Derzh. Univ., Ser.: Fiz., 1999, vol. 3, no. 440, p. 115.

    Google Scholar 

  47. Rao, B., Kumar, A., and Rao, K., J. Optoelectron. Adv. Mater., 2006, vol. 8, no. 5, p. 1703.

    CAS  Google Scholar 

  48. Ol’khovik, L.P., Sizova, Z.I., Shurinova, E.V., and Kamzin, A.S., Phys. Solid State, 2005, vol. 47, no. 7, p. 1306.

    Google Scholar 

  49. Thomson, A.J. and Gray, H.B., Curr. Opin. Chem. Biol., 1998, vol. 2, p. 155.

    CAS  Google Scholar 

  50. Sigel, A. and Sigel, H., Metal Ions in Biological Systems: Iron Transport and Storage in Microorganisms, Plants, and Animals, New York Wiley, 1998.

    Google Scholar 

  51. Magnetite Mineralization and Magnetoreception in Organisms: A New Biomagnetizm, Kirschvink, J.L., Jones, D.S., and MacFadden, B.J., Eds., New York Plenum, 1985, vol. 1.

  52. Magnetite Mineralization and Magnetoreception in Organisms: A New Biomagnetizm, Kirschvink, J.L., Jones, D.S., and MacFadden, B.J., Eds., New York Plenum, 1985, vol. 2.

  53. Meldrum, F.C., Mann, S., and Heywood, B.R., Proc. R. Soc. London, Ser. B, 1993, vol. 251, no. 1332, p. 231.

    Google Scholar 

  54. Feinberg, J. and Kasama, T., Am. Mineral., 2009, vol. 94, p. 1120.

    Google Scholar 

  55. Devouard, B., Posfai, M., and Hua, X., Am. Mineral., 1998, vol. 83, no. 11, p. 1387.

    CAS  Google Scholar 

  56. Banin, A. and Mancinelli, R.L., Adv. Space Res., 1997, no. 3, p. 163.

    Google Scholar 

  57. Delong, E.F., Frankel, R.B., and Bazylinski, D.A., Science, 1993, vol. 259, p. 803.

    CAS  Google Scholar 

  58. Fischer, A., Schmitz, M., Aichmayer, B., Fratzl, P., and Faivre, D., J. R. Soc., Interface, 2001, vol. 12, no. 106. doi 10.1098/rsif.2010.0576. http://rsif.royalsocietypublishing.org/content/early/2011/01/13/rsif.2010.0576. full.html#

    Google Scholar 

  59. Waldron, K.J. and Robinson, N.J., Nat. Rev. Microbiol, 2009, vol. 7, no. 1, p. 25.

    CAS  Google Scholar 

  60. Moon, J., Roh, Y., Lauf, R., Vali, H., Yeary, L., and Phelps, T., J. Microbiol. Methods, 2007, no. 70, p. 150.

    CAS  Google Scholar 

  61. Stone, J.J., Burgos, W.D., and Royer, R.A., Abstracts of Papeprs, 11th Annual V. M. Goldschmidt Conf., Hot Springs, Virginia, 2001, p. 3590.

    Google Scholar 

  62. Ragland, M., Briat, J.F., and Gagnon, J., J. Biol. Chem., 1990, vol. 265, no. 30, p. 18339.

    CAS  Google Scholar 

  63. Theil, E.C., Annu. Rev. Biochem., 1987, no. 56, p. 289.

    CAS  Google Scholar 

  64. Ladygina, V.P., Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation Krasnoyarsk, 2011.

    Google Scholar 

  65. Dobretsov, K.G., Afon’kin, V.Yu., Stolyar, S.V., Ladygina, V.P., Sipkin, A.V., and Lopatin, A.S., Vestn. Otorinolaringol., 2008, no. 5, p. 20.

    Google Scholar 

  66. Dobretsov, K.G., Afon’kin, V.Yu., Stolyar, S.V., and Ladygina, V.P., Ross. otorinolaringol., 2009, vol. 40, no. 3, p. 51.

    Google Scholar 

  67. Dobretsov, K.G., Afon’kin, V.Yu., and Kirichenko, A.K., Byull. Eksperim. Biol. Med., 2009, no. 6, p. 693.

    Google Scholar 

  68. Weissleder, R., Stark, D., Engelstad, B., Bacon, B., Compton, C., White, D., Jacobs, P., and Lewis, J., AJR, Am. J. Roentgenol., 1989, no. 152, p. 167.

    CAS  Google Scholar 

  69. Mil’to, I.V., Sukhodolo, I.V., Kliment’eva, T.K., and Shevtsova, N.M., Byull. Sibirsk. Med., 2011, no. 3, p. 48.

    Google Scholar 

  70. Mil’to, I.V., Mikhailov, G.A., Rat’kin, A.V., and Magaeva, A.A., Byull. Sibirsk. Med., 2008, no. 1, p. 32.

    Google Scholar 

  71. Mil’to, I.V., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Tomsk Siberian State. Med. Univ., 2010.

    Google Scholar 

  72. Ilyukha, N.G., Barsova, Z.V., Kovalenko, V.A., and Tsikhanovskaya, I.V., East.-Eur. J. Enterp. Technol., 2010, vol. 6, no. 10, p. 32.

    Google Scholar 

  73. Belousov, A.N., Visnik Probl. Biol. Med. (Poltava), 2003, no. 7, p. 36.

    Google Scholar 

  74. Bilets’kii V.S. and Smirnov V.O. Pererobka i yakist’ korisnikh kopalin (Processing and Quality of Minerals), Donetsk Skhidnii vidavnichii dim, 2005.

    Google Scholar 

  75. Levin, B.E., Tret’yakov, Yu.D., and Letyuk, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Physico-Chemical Bases of Obtaining, Properties, and Applications of Ferrites), Moscow Metallurgiya, 1979.

    Google Scholar 

  76. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow Mosk. Gos. Univ., 2003.

    Google Scholar 

  77. Gusev, A.I., Nanometrialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnology), Moscow FIZMATLIT, 2005.

    Google Scholar 

  78. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructured Materials), Moscow Akademiya, 2005.

    Google Scholar 

  79. Suzdalev, I.P., Nanotekhnologiya: fizikokhimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow KomKniga, 2006.

    Google Scholar 

  80. Melikhov, I.V., Ross. Khim. Zh., 2002, vol. 46, no. 5, p. 7.

    CAS  Google Scholar 

  81. Isfahani, N., Myndyk, M., and Menzel, D., J. Magn. Magn. Mater., 2009, no. 231, p. 152.

    Google Scholar 

  82. Sepelak, V. and Tkacova, K., Acta Montan. Slovaca, 1997, vol. 2, no. 3, p. 266.

    Google Scholar 

  83. Sepelak, V., Druska, P., and Steinike, U., Mater. Struct., 1999, vol. 6, no. 2, p. 100.

    Google Scholar 

  84. Ghobeiti, H., Seyyed, E., and Badiei, A., J. Eur. Ceram. Soc., 2007, no. 27, p. 3637.

    Google Scholar 

  85. Randhawa, B.S. and Sweety, K., J. Them. Anal. Calorim., 2000, vol. 60, p. 535.

    CAS  Google Scholar 

  86. Chimamkpam, E., Schweizer, T., Schilling, A., and Ferreira, J., Nanotecnology, 2011, vol. 1, no. 5, p. 527.

    CAS  Google Scholar 

  87. Singhal, S., Namgyal, T., Bansal, S., and Chandra, K., J. Electromagn. Anal. Appl., 2010, no. 2, p. 376.

    CAS  Google Scholar 

  88. Xu, Y., Liang, Y., Jiang, L., Wu, H., Zhao, H., and Xue, D., J. Nanomater., 2011, 525967. http://www.hindawi.com/journals/jnm/2011/525967

    Google Scholar 

  89. Byrappa, K. and Yoshimura, M., Handbook of Hydrothermal Technology, New York Hard Cover, 2001.

    Google Scholar 

  90. Synthesis Functionalization, and Surface Treatment of Nanoparticles, Baraton, M.I., Ed., Los-Angeles Am. Scientific, 2003.

    Google Scholar 

  91. Meskin, P.E., Ivanov, V.K., Barantchikov, A.E., Churagulov, B.R., and Tretyakov, Yu.D., J. Ultrason. Sonochem., 2006, no. 13, p. 47.

    CAS  Google Scholar 

  92. Burukhin, A.A., Churagulov, B.R., Oleinikov, N.N., and Meskin, P.E., Russ. J. Inorg. Chem., 2001, vol. 46, no. 5, p. 646.

    Google Scholar 

  93. Simeonidis, K., Mourdikoudis, S., Moulla, M., Tsiaoussis, I., Martinez-Boubeta, C., Angelakeris, M., Dendrinou-Samara, C., and Kalogirou, O., J. Magn. Magn. Mater., 2007, no. 316, p. 14.

    Google Scholar 

  94. Willard, M.A., Kurihara, L.K., and Carpenter, E.E., in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed., Valencia American Scientific, 2004, p. 815.

  95. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., and Muller, R.N., Chem. Rev., 2008, vol. 108, no. 6, p. 2064.

    CAS  Google Scholar 

  96. Movchan, B.A., Aktual’nye problemy sovremennogo materialovedeniya (Topical Problems of Modern Materials Science), Kiev Akademperiodika, 2008.

    Google Scholar 

  97. Movchan, B.A., Visnik Farmakol. Farmats., 2007, no. 12, p. 5.

    Google Scholar 

  98. Kuz’micheva, T.G., Ol’khovik, L.P., and Shabatin, V.P., USSR Inventor’s Certificate no. 1724584, Byull. Izobret., 1991, no. 13.

    Google Scholar 

  99. Napolsky, K.S., Eliseev, A.A., and Knotko, A.V., J. Mater. Sci. Eng., 2003, no. 23, p. 151.

    Google Scholar 

  100. Pileni, M.P., J. Phys. Chem, 1993, vol. 97, p. 6961.

    CAS  Google Scholar 

  101. Yang, H.H., Zhang, S.Q., Chen, X.L., Zhuang, Z.X., Xu, J.G., and Wang, X.R., Anal. Chem., 2004, vol. 76, no. 5, p. 1316.

    CAS  Google Scholar 

  102. Massart, R., IEEE Trans. Magn., 1981, vol. 17, no. 2, p. 1247.

    Google Scholar 

  103. Joshi, H.H., Pandya, P.B., Modi, K.B., Jani, N.N., Baldha, G.J., and Kulkarni, R.G., Bull. Mater. Sci., 1997, vol. 20, no. 1, p. 93.

    CAS  Google Scholar 

  104. Hsu, W., Chen, S.C., and Kuo, P.C., Mater. Sci. Eng., 2004, no. 111, p. 142.

    Google Scholar 

  105. Koval’, A.O., Cand. Sci. (Pharm.) Dissertation, Kharkov Natl. Pharm. Univ., 2009.

    Google Scholar 

  106. Demetskii, A.M. and Alekseev, A.G., Iskusstvennye magnitnye polya v meditsine (Artificial Magnetic Fields in Medicine), Minsk, 1981.

    Google Scholar 

  107. Bossis, G., Lacis, S., and Meunier, A., J. Magn. Magn. Mater., 2002, vol. 252, no. 11, p. 224.

    CAS  Google Scholar 

  108. Viota, J., Delgado, A., and Arias, J., J. Colloid Interface Sci., 2008, vol. 324, nos. 1–2, p. 199.

    CAS  Google Scholar 

  109. Iskakova, L., J. Phys.: Condens. Matter, 2008, no. 20, p. 38.

    Google Scholar 

  110. Gupta, A. and Naregalkar, R., Vaidya, V., Nanomedicine, 2007, no. 2, p. 23.

    CAS  Google Scholar 

  111. Hafeli, U., Schutt, W., Teller, J., and Zborowski, M., Scientific and Clinical Applications of Magnetic Carriers, New York Plenum, 1997.

    Google Scholar 

  112. Tartaj, P., Morales, M., Veintemillas-Verdaguer, S., Gonzalez, T., and Serna, C., J. Phys. D: Appl. Phys., 2003, no. 36, p. 182.

    Google Scholar 

  113. Gupta, A.K. and Curtis, A., Eur. Cells Mater., 2002, vol. 4, no. 2, p. 101.

    Google Scholar 

  114. Wu, Y., Zuo, E., Zheng, Z., Ding, X., and Peng, Y., Nanoscale Res. Lett., 2009, no. 4, p. 738.

    CAS  Google Scholar 

  115. Faraji, M., Yamini, Y., and Rezaee, M., J. Iran. Chem. Soc., 2010, vol. 7, no. 1, p. 17.

    Google Scholar 

  116. Arruebo, M., Fernandez-Pacheco, R., Ibarra, M.R., and Santamaria, J., Nano Today, 2007, vol. 2, no. 3, p. 22.

    Google Scholar 

  117. Sun, Y., Duan, L., and Guo, Z., J. Magn. Magn. Mater., 2005, vol. 285, nos. 1–2, p. 65.

    CAS  Google Scholar 

  118. Hahn, P.F., Stark, D.D., and Lewis, J.M., Radiology, 1990, vol. 175, no. 3, p. 695.

    CAS  Google Scholar 

  119. Arbab, A.S., Bashaw, L.A., and Miller, B.R., Radiology, 2003, vol. 229, no. 3, p. 838.

    Google Scholar 

  120. Foy, S., Jain, T., and Labhasetwar, V., Pharm. Res., 2010, vol. 27, no. 11, p. 2283.

    Google Scholar 

  121. Gupta, A.K. and Wells, S., IEEE Trans. Nanobiosci., 2004, vol. 3, no. 1, p. 66.

    Google Scholar 

  122. Villanueva, A., Canete, M., and Roca, A.G., Nanotecnology, 2009, vol. 20, no. 11, p. 95.

    Google Scholar 

  123. Berry, C., Wells, S., Charles, S., and Curtis, A., Biomaterials, 2003, no. 24, p. 4551.

    CAS  Google Scholar 

  124. Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C., and Corot, C., Invest. Radiol., 2004, vol. 39, no. 1, p. 56.

    CAS  Google Scholar 

  125. Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., Fobker, M., Poremba, C., Ebert, W., Heindel, W., and Bremer, C., Radiology, 2005, vol. 235, no. 1, p. 155.

    Google Scholar 

  126. Petri-Fink, A., Chastellain, M., Juillerat-Jeanneret, L., Ferrari, A., and Hofmann, H., Biomaterials, 2005, vol. 26, no. 15, p. 2685.

    CAS  Google Scholar 

  127. Hauger, O., Grenier, N., Deminere, C., Lasseur, C., Delmas, Y., Merville, P., and Combe, C., Eur. Radiol., 2007, no. 17, p. 2898.

    Google Scholar 

  128. Tsyb, A.F., Amosov, I.S., Berkovsky, B.M., Nikitina, V.I., Rozhinsky, M.M., Suloyeva, L.V., and Shakhlevich, G.M., J. Magn. Magn. Mater., 1993, vol. 39, no. 2, p. 183.

    Google Scholar 

  129. Taketomi-Takahashi, A., Tsushima, Y., Nakajima, T., Takano, A., Amanuma, M., and Endo, K., Am. J. Roentgenol., 2007, no. 188, p. 1026.

    Google Scholar 

  130. Kircher, M., Mahmood, U., King, R., Weissleder, R., and Josephson, L., Cancer Res., 2003, no. 63, p. 8122.

    CAS  Google Scholar 

  131. Gang, J., Hyung, W., and Wen, J., J. Drug Targeting, 2007, no. 15, p. 445.

    CAS  Google Scholar 

  132. Goya, G., Grazu, V., and Ibarra, M., Curr. Nanosci., 2008, vol. 4, no. 1, p. 801.

    Google Scholar 

  133. Lee, H., Park, S., and Moon, S., J. Am. Chem. Soc., 2007, no. 127, p. 39.

    Google Scholar 

  134. Gorbik, P.P., Petranovs’ka, A.L., Storozhuk, L.P., Lukyanova, N.Yu., Korduban, O.M., Makhno, S.M., Chuiko, O.O., Chekhun, V.F., and Shpak, A.P., Ukr. Khim. Zh., 2007, vol. 73, no. 5, p. 24.

    CAS  Google Scholar 

  135. Latorre, M. and Rinaldi, C., Health Sci. J., 2009, vol. 28, no. 3, p. 227.

    Google Scholar 

  136. Saiyed, Z., Telang, S., and Ramchand, C., Indian J. Eng. Mater. Sci., 2004, no. 11, p. 358.

    CAS  Google Scholar 

  137. Alexiou, C., Jurgons, R., and Seliger, C., Anticancer Res., 2007, vol. 27, no. 10, p. 2019.

    CAS  Google Scholar 

  138. Chekhun, V.F., Zdorov’e Ukrainy, 2007, no. 20, p. 40.

    Google Scholar 

  139. Naleskina, L.A., Borodai N.V., and Chekhun, V.F., Onkologiya, 2009, vol. 11, no. 3, p. 166.

    Google Scholar 

  140. Gupta, A. and Curtis, A., Biomaterials, 2004, vol. 25, no. 2, p. 3029.

    CAS  Google Scholar 

  141. Kobeiter, H., Georgiades, C.S., Leakakos, T., Torbenson, M., Hong, K., and Geschwind, J.F., Anticancer Res., 2007, vol. 27, no. 4, p. 755.

    CAS  Google Scholar 

  142. Jing, H., Wang, J., Yang, P., Ke, X., Xia, G., and Chen, B., Int. J. Nanomed., 2010, no. 5, p. 999.

    CAS  Google Scholar 

  143. Ermakov, A.E., Antipov, S.A., Dambaev, G.Ts., Kokorev, O.V., Svarovskaya, L.I., Uimin, M.A., Fedushchak, T.A., and Khlusov, I.A., Sibirsk. Med. Zh., 2009, no. 6, p. 45.

    Google Scholar 

  144. Belousov, A.N., Nanotechnology, 2009, vol. 2, p. 154.

    CAS  Google Scholar 

  145. Zhang, Y., Kohler, N., and Zhang, M., Biomaterials, 2002, vol. 23, no. 1, p. 1553.

    CAS  Google Scholar 

  146. Moshechkov, N.G., Makhlin, R.S., Baryshnikov, A.Yu., Blokhin, D.Yu., Golenkna, E.A., Ivanov, P.K., Filippov, V.I., and Ershov, O.L., in., in Tr. X Mezhdunar. Plesskoi konferentsii po magnitnym zhidkostyam (Proc. X Int. Pless Conf. on Magnetic Fluids), Ivanovo, 2002, p. 343.

    Google Scholar 

  147. Sergienko, A.V., Farmatsiya, 2005, vol. 43, no. 2, p. 25.

    Google Scholar 

  148. Smolyaninova, M.V., Cand. Sci. (Pharm.) Dissertation, Moscow First Moscow State Med. Univ., 2000.

    Google Scholar 

  149. Hester-Reilly, H.J. and Shapley, N.C., J. Magn. Reson., 2007, no. 188, p. 168.

    CAS  Google Scholar 

  150. Hong, X., Gao, X., and Jiang, L., J. Am. Chem. Soc., 2007, no. 129, p. 1478.

    CAS  Google Scholar 

  151. Riviere, C., Tomita, Y., and Wilhelm, C., J. Radiol., 2007, no. 244, p. 439.

    Google Scholar 

  152. Ismailova, G.K., Efremenko, V.I., and Savel’eva, I.V., Khim.-Farm. Zh., 2006, vol. 40, no. 14, p. 3.

    Google Scholar 

  153. Dandamudi, S. and Campbell, R., J. Biochim. Biophys. Acta, 2007, no. 1768, p. 427.

    CAS  Google Scholar 

  154. Cherkasova, O.G., Khim.-Farm. Zh., 1991, vol. 25, no. 5, p. 4.

    Google Scholar 

  155. Gusev, A.I., Nanokristallicheskie materialy: metody polucheniya i svoistva (Nanocrystalline Materials: Preparation and Properties), Yekaterinburg Uralsk. Otd. Ross. Akad. Nauk, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Vedernikova.

Additional information

Original Russian Text © I.A. Vedernikova, 2015, published in Obzornyi Zhurnal po Khimii, 2015, Vol. 5, No. 3, pp. 289–313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedernikova, I.A. Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. Ref. J. Chem. 5, 256–280 (2015). https://doi.org/10.1134/S2079978015030036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978015030036

Keywords

Navigation