Skip to main content
Log in

The Nadeiyakha Ore Occurrence (Pai-Khoi, Russia): An Example of Ferromanganese Metasediments in Carbonaceous Dolomitic Shales

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The paper presents the results of study of metalliferous (ferromanganese and manganese) rocks at the Nadeiyakha ore occurrence (Pai-Khoi) discovered in 2010. The metalliferous deposit represents a stratiform body lying conformably in the Upper Devonian carbonaceous siliceous and clayey–carbonate–siliceous shales. The ore bed occurs 180 m below the regional Famennian manganiferous rock association in Pai-Khoi. Discovery of the Nadeiyakha ore occurrence suggests the existence of an additional age interval of Mn accumulation within the Devonian sequence of this region. The studied metalliferous rocks display structures and textures typical of the metasedimentary rocks. In terms of composition, they are divided into two varieties: (i) ferromanganese (quartz–carbonate) rocks composed of quartz, dolomite, kutnahorite, rhodochrosite, siderite, and calcite; (ii) manganiferous (quartz–rhodochrosite–silicate) rocks composed of quartz, rhodochrosite, tephroite, sonolite, and pyroxmangite. The Nadeiyakha ore occurrence is marked by the abundance of dolomite in the ferromanganese rocks and host shales. In terms of the relationship of indicator elements (Al, Ti, Fe, and Mn), ferromanganese and manganese rocks are comparable with the recent metalliferous and ore-bearing sediments. The carbon isotope composition in carbonates (δ13C from –16.4 to –7.8‰ PDB) corresponds to authigenic carbonates related to the involvement of carbon dioxide produced during the microbial decomposition of organic matter at the stage of dia- and/or catagenesis. Geological and petrographic observations show that the ferruginous and manganiferous sediments were deposited synchronously with the terrigenous–carbonate–siliceous sediments. Fe and Mn could be sourced from hydrothermal solutions or interstitial diagenetic waters. The latter version seems to be more probable. Metals were accumulated in a depression-trap characterized by a periodic stagnation of bottom waters. Such sedimentation setting promoted the formation of paragenetic association of ferruginous and manganiferous sediments with the carbonaceous sediments and fostered reductive conditions during the postsedimentary mineral formation. Calcium carbonates contained in the primary rocks were subjected to dolomitization during the dia- or catagenesis. This process was promoted by the mobilization of Mg released during the transformation of clay minerals owing to the montmorillonite–illite transition. Iron and manganese carbonates were formed during the later replacement of oxides of Mn3+, Mn4+, and Fe3+. Crystallization of manganese silicates also started at early stages of lithogenesis and terminated during the regional metamorphism of metalliferous rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Belyaev, A.A., Lithogenetic features of Paleozoic formations in the Kara zone of Pai-Khoi, in Geologiya i mineral’no-syr’evye resursy evropeiskogo Severo-Vostoka Rossii (Geology and Mineral Resources of the European Northeast Russia), Syktyvkar: IG KNTs UrO RAN, 1994, vol. 1, pp. 55–58.

  2. Brusnitsyn, A.I., Mineralogiya margantsevonosnykh metaosadkov Yuzhnogo Urala (Mineralogy of Manganiferous Metasediments in the South Urals), St. Petersburg: SPbGU, IPK KOSTA, 2013.

  3. Brusnitsyn, A.I. and Ignatova, M.V., Nadeiyakha-2: A new rhodonite rock occurrence in Pai-Khoi, in Metallogeniya drevnikh i sovremennykh okeanov – 2014 (Metallogeny of Ancient and Recent Oceans – 2014), Maslennikov, V.V and Melekestsev, I.Yu., Eds., Miass: IMinUrO RAN, 2014, pp. 83–87.

  4. Brusnitsyn, A.I., Kuleshov, V.N., Perova, E.N., and Zaitsev, A.N., Ferromanganese carbonate metasediments of the Sob area, Polar Urals: Bedding conditions, composition, and genesis, Lithol. Miner. Resour., 2017a, no. 3, pp. 19–213.

  5. Brusnitsyn, A.I., Starikova, E.V., and Zhukov, I.G., Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications, Ore Geol. Rev., 2017b, vol. 85, pp. 140–152.

    Article  Google Scholar 

  6. Calvert, S.E. and Pedersen, T.F., Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shale, Econ. Geol., 1996, vol. 91, pp. 36–47.

    Article  Google Scholar 

  7. Crerar, D.A., Cormick, R.K., and Barnes, H.X., Organic controls on sedimentary geochemisrty of manganese, Acta Mineral. Petrogr. Univ. Szeged, 1972, vol. 20, pp. 217–226.

    Google Scholar 

  8. Emel’yanov, E.M., Ferromanganese ore process in the Baltic Sea, Lithol. Miner. Resour., 2011, no. 3, pp. 199–219.

  9. Fan, Delian., Liu, Tiebing., and Ye, Jie., The process of formation of manganese carbonate deposits hosted in black shale series, Econ. Geol., 1992, vol. 87, pp. 1419–1429.

    Article  Google Scholar 

  10. Force, E.R., Back, W., and Spiker, E.C., Aground-water mixing model for the origin of the Iminu manganese deposits (Cretaceous) of Morocco, Econ. Geol., 1986, vol. 81, pp. 65–79.

    Article  Google Scholar 

  11. Frakes, L. and Bolton, B., Origin of manganese giants: sea level change and anoxic-oxic history, Geology, 1984, vol. 12, pp. 83–86.

    Article  Google Scholar 

  12. Frakes, L. and Bolton, B., Effects of oceanic chemistry, sea level, and climate on the formation of primary sedimentary manganese ore deposits, Econ. Geol., 1992, vol. 87, pp. 1207– 1217.

    Article  Google Scholar 

  13. Garrels, R.M. and Christ, C.L., Solutions, Minerals, and Equilibria, New York: Harper and Row, 1965. Translated under the title Rastvory, mineraly, ravnovesiya, Moscow: Mir, 1968.

  14. Geologiya i poleznye iskopaemye Rossii. Zapad Rossii i Ural (Geology and Minerals Resources of Russia: Western Russia and the Urals), St. Petersburg: VSEGEI, 2011, vol. 1, part 2.

  15. Goldsmith,J.R., Phase interrelations of trigonal carbonates, in Karbonaty: mineralogiya i khimiya (Carbonates: Mineralogy and Chemistry), Moscow: Mir, 1987, pp. 69–104.

  16. Gutzmer, J., Beukes, N.J., The manganese formation of the Neoproterozoic Penganga Group, India – revision of an enigma, Econ. Geol., 1998, vol. 93, pp. 1091–1102.

    Article  Google Scholar 

  17. Hoefs, J., Stable Isotope Geochemistry, Berlin: Springer, 2009.

    Google Scholar 

  18. Huckriede, H. and Meischner, D., Origin and environment of manganese-rich sediments within black-shale basins, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1399–1413.

    Article  Google Scholar 

  19. Katsikopoulos, D., Fernandez-Gonzalez, A., and Prieto, M., Precipitation and mixing properties of the “disordered” (Mn, Ca)CO3 solid solution, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 6147–6161.

    Article  Google Scholar 

  20. Khvorova, I.V., Silica Deposition in geosynclinals zones of the past, in Osadkoobrazovanie i poleznye iskopaemye vulkanicheskikh oblastei proshlogo (Sedimentation and Mineral Resources in Volcanic Regions of the Past), Khvorova, I.V., Ed., Moscow: Nauka, 1968, pp. 9–136.

  21. Konhauser, K., Introduction to Geomicrobiology, Blackwell Publ., 2007.

    Google Scholar 

  22. Kuleshov, V.N., Geokhimiya izotopov (δ13 C and δ18 O) i proiskhozhdenie karbonatnykh margantsevykh rud (Geochemistry of Isotopes δ13C and δ18O and Origin of Carbonate Manganiferous Ores), Moscow: Geoinformmark, 2001a.

  23. Kuleshov, V.N., Evolution of isotopic carbon dioxide–water systems in lithogenesis: Communication 1. Sedimentogenesis and diagenesis, Lithol. Miner. Resour., 2001b, no. 5, pp. 429–444.

  24. Kuleshov, V.N., Margantsevye porody i rudy: geokhimiya izotopov, genezis, evolyutsiya rudogeneza (Manganese Rocks and Ores: Isotope Geochemistry, Genesis, and Evolution of Ore Genesis), Moscow: Nauch. Mir, 2013.

  25. Kuleshov, V.N. and Brusnitsyn, A.I., Isotopic composition (δ13C, δ18O) and the origin of carbonates from manganese deposits of the southern Urals, Lithol. Miner. Resour., 2005, no. 4, pp. 364–375.

  26. Lein, A.Yu., Authigenic Carbonate Formation in the Ocean, Lithol. Miner. Resour., 2004, no. 1, pp. 1–30.

  27. Li, Y.-H. and Schoonmaker, J.E., Chemical composition and mineralogy of marine sediments, in Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry, Mackenzie, F.T., Ed., Oxford: Elsevier-Pergamon, 2003, vol. 7, pp. 1–35.

    Google Scholar 

  28. Leeder, M. R., Sedimentology. Process and Product., Allen Unwin, London, 1982. Translated under the title Sedimentologiya. Protsessy i produkty, Moscow: Mir, 1986.

  29. Litogeodinamika i mineralogeniya (Lithogeodynamics and Mineral Genesis), Shcheglov, A.D., Ed., St. Petersburg: VSEGEI, 1998.

    Google Scholar 

  30. Machel, H.-G. and Mountjoy, E., Chemistry and environments of dolomitizatiom – a reappraisal, Earth-Sci. Rev., 1986, vol. 23, pp. 175–222.

    Article  Google Scholar 

  31. Maynard, J.B., Manganiferous sediments, rocks and ores in Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry, Mackenzie, F.T., Ed., Oxford: Elsevier-Pergamon, 2003, vol. 7, pp. 289–308.

    Google Scholar 

  32. Miklyaev, A.S., Upper Devonian rocks in the shale zone of Pai-Khoi and their possible ore potential, in Geologiya devona Severo-Vostoka evropeiskoi chasti SSSR (The Devonian Geology in the Northeastern European Soviet Union), Tsyganko, V.S., Ed., Syktyvkar: Inst, Geol. Komi NTs RAN, 1991, pp. 52–53.

  33. Miklyaev, A.S. and Belyaev, A.A., Upper Devonian and Lower carboniferous rocks in the shale zone of southeastern Pai-Khoi, in Obosnovanie granits stratigraficheskikh podrazdelenii (Substantiation of Boundaries of Stratigraphic Subdivisions), Syktyvkar, 1994, pp. 27–34.

  34. Munteanu, M., Marincea, S., Kasper, H.U., et al., Black chert-hosted manganese deposits from the Bistritei Mountains, Eastern Carpathians (Romania): petrography, genesis and metamorphic evolution, Ore Geol. Rev., 2004, vol. 24, pp. 45–65.

    Article  Google Scholar 

  35. Okita, P.M., Manganese carbonate mineralization in the Molango district, Mexico, Econ. Geol., 1992, vol. 87, p. 1345.

    Article  Google Scholar 

  36. Okita, P.M., Maynard, J.B., Spiker, E.C., and Force, E.R., Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 2679–2685.

    Article  Google Scholar 

  37. Polgari, M., Model of formation of the carbonatic manganese ore of Urkut, Publ. Lab. Geochem. Res. Hung. Acad. Sci., Budapest, 1993, pp. 109–128.

    Google Scholar 

  38. Puchkov, V.N., Batial’nye kompleksy passivnykh okrain geosinklinal’nykh oblastei (Bathyal Complexes at Passive Margins of Geosynclinal Regions), Moscow: Nauka, 1979.

  39. Roy, S., Manganese Deposits, London: Academic Press, 1981. Translated under the title Mestorozhdeniya margantsa, Moscow: Mir, 1986.

  40. Rozanov, A.G. and Volkov, I.I., Bottom sediments of Kandalaksha Bay in the White Sea: The phenomenon of Mn, Geochem. Int., 2009, no. 10, pp. 1004–1021.

  41. Starikova, E.V. and Zavileiskii, D.I., Geological setting and mineral composition of Famennian manganese ores in the Lemva zone of Pai-Khoi: Evidence from ore occurrences of the Nizhny Silov Group, Lithol. Miner. Resor., 2010, no. 4, pp. 383–400.

  42. Starikova, E.V., Mineralogy of rhodonite rocks at the Silovayakha occurrence, Pai-Khoi, Zap. RMO, 2011, no. 5, pp. 76–93.

  43. Starikova, E.V., New occurrence of silicate manganese rocks in Pai-Khoi, in Metallogeniya drevnikh i sovremennykh okeanov-2012: Gidrotermal’nye polya i rudy (Metallogeny of Ancient and Recent Oceans—2012: Hydrothermal Fields and Ores), Zaikov, V.V. and Melekestsev, I.Yu., Eds., Miass: IMinUrO RAN, 2012, pp. 90–93.

  44. Starikova, E.V., The Famennian manganiferous formation in Pai-Khoi, Litosfera, 2014, no. 1, pp. 58–80.

  45. Starikova, E.V. and Kuleshov, V.N., Isotopic composition (δ13C and δ18O) and genesis of carbonates from the Famennian manganiferous formation of Pai-Khoi, Lithol. Miner. Resour., 2016, no. 3, pp. 195–214.

  46. Starikova, E.V. and Zhuravlev, A.V., Stratigraphic position and genesis of manganese rocks at the Nadeiyakha occurrence, Pai-Khoi, in Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii (Sedimentary Basins: Sedimentary and Postsedimentary Processes in the Geological History), Novosibirsk, 2013, pp. 144–148.

  47. Strakhov, N.M., Shterenberg, L.E., Kalinenko, V.V., and Tikhomirova, E.S., Geokhimiya osadochnogo margantsevorudnogo protsessa (Geochemistry of the Sedimentary Manganese Ore Process), Moscow: Nauka, 1968.

  48. Sunby, B., Mn-rich particulate matter in coastal marine environment, Nature, 1977, vol. 27, no. 5636, pp. 417–419.

    Article  Google Scholar 

  49. Voinovskii-Kriger, K.G., Two Paleozoic complexes on the western slope of the Polar Urals, Ofioliti, 1945, no. 6, pp. 27–44.

  50. Warren, J., Dolomite: occurrence, evolution and economically important associations, Earth-Sci. Rev., 2000, vol. 52, pp. 1–81.

    Article  Google Scholar 

  51. Yudovich, Ya.E. and Ketris, M.P., Geokhimiya chernykh slantsev (Geochemistry of Black Shales), Leningrad: Nauka, 1988.

  52. Yudovich, Ya.E. and Ketris, M.P., Geokhimicheskie i mineralogicheskie indikatory vulkanogennykh produktov v osadochnykh tolshchakh (Geochemical and Mineralogical Indicators of Volcanic Products in Sedimentary Sequences), Yekaterinburg: UrO RAN, 2010.

  53. Yudovich, Ya.E., Belyaev, A.A., and Ketris, M.P., Geochemistry, mineralogy, and ore genesis in black shales of Pai-Khoi, in Rudoobrazovanie na Timane i Severe Urala (Ore Formation in Timan and North Urals), Syktyvkar, 1981, pp. 54–72.

    Google Scholar 

  54. Yudovich, Ya.E., Ketris, M.P., Merts, A.V., and Belyaev, A.A., Petrochemical identification of volcanic products in blacks shales of Pai-Khoi, Geokhimiya, 1984, no. 6, pp. 868–882.

  55. Yudovich, Ya.E., Belyaev, A.A., and Ketris, M.P., Geokhimiya i rudogenez chernoslantsevykh formatsii Pai-Khoya (Geochemistry and Ore Genesis of Black Shales in Pai-Khoi), St. Petersburg: Nauka, 1997.

  56. Yushkin, N.P., Kunts, A.F., and Timonin, N.I., Minerageniya Pai-Khoya (Minerageny of Pai-Khoi), Yekaterinburg: UrO RAN, 2007.

  57. Zaikova, E.V., Kremnistye porody ofiolitovykh assotsiatsii (na primere Mugodzhar) (Siliceous Rocks of Ophiolite Formations: Evidence from Mugodzhary), Moscow: Nauka, 1991.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-05-00227a, PPRAN no. 48.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Brusnitsyn, E. V. Starikova or V. N. Kuleshov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusnitsyn, A.I., Starikova, E.V., Ignatova, M.V. et al. The Nadeiyakha Ore Occurrence (Pai-Khoi, Russia): An Example of Ferromanganese Metasediments in Carbonaceous Dolomitic Shales. Lithol Miner Resour 54, 159–185 (2019). https://doi.org/10.1134/S0024490219020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490219020020

Navigation