Skip to main content

Advertisement

Log in

The Sources of Organic Matter in Seagrass Sediments and Their Contribution to Carbon Stocks in the Spermonde Islands, Indonesia

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Seagrass ecosystems have a potential role in climate change mitigation due to their ability to store high amount of carbon, particularly in the sediment. Studying the factors and mechanisms responsible for this storing capacity is essential to understand seagrass carbon sink function. Therefore, in this study, we identified the sources of organic carbon (Corg) in seagrass sediments and the implication to Corg stocks from four islands in the Spermonde Islands that located at different zones. We used the Bayesian stable isotope mixing model to estimate the proportional contribution of different sources to sediment carbon. Seagrass meadows that located in adjacent to high anthropogenic activities (deforestation and aquacultures) with direct exposure to wave actions, such as on the Bauluang Island, accumulated organic carbon that derived from multiple sources, where phytoplankton contributed the highest, while on the other three islands that are relatively protected from wave actions, the highest contribution (~ 75%) was from autochthonous production (seagrass-derived). Sediment Corg stocks vary spatially, ranging from 11.9 to 32.1 Mg C ha−1 (based on the obtained depth of 20–55 cm), or 40.5 to 83.5 Mg C ha−1 if extrapolated to 1 m depth. The variability of sediment properties and Corg stocks in this study is not solely determined by the geographical differences (inshore, nearshore and offshore islands), but also influenced by other local factors such as hydrodynamics that control the distribution of carbon sources, anthropogenic pressures and species composition. These factors should be taken into account when developing coastal management strategies, as efforts are being undertaken to include coastal ecosystems (including seagrass ecosystems) on the National Green House Gasses Reduction Strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data sources: 1—Rozaimi et al. (2017), 2—Phang et al. (2015), 3—Fourqurean et al. (2012a), 4—Fourqurean et al. (2012b), 5—Miyajima et al. (2015)

Similar content being viewed by others

References

  • Akbar AS, Saleh B, Sofian I, Nurdin N (2014) Geospatial dynamic of vegetation cover changes on the small islands, South Sulawesi, Indonesia. Majalah Ilmiah Globe 16(1):25–32

    Google Scholar 

  • Ambo-Rappe R (2014) Developing a methodology of bioindication of human-induced effects using seagrass morphological variation in Spermonde Archipelago, South Sulawesi, Indonesia. Mar Pollut Bull 86(2014):298–303

    Article  Google Scholar 

  • Armitage AR, Fourqurean JW (2016) Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences 13:313–321

    Article  Google Scholar 

  • Beer S, Björk M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine angiosperm (seagrasses). Funct Plant Biol 29:349–354

    Article  Google Scholar 

  • Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delawary estuary. Limnol Oceanogr 33(5):1102–1115

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 5:159–174

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1):1–8

    Article  Google Scholar 

  • Dubois S, Savoye N, Grémare A, Plus M, Charlier K, Beltoise A, Blanchet H (2012) Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: an elemental and isotopic study at the ecosystem space scale. J Mar Syst 94:64–73

    Article  Google Scholar 

  • Emerson S, Hedges J (2003) Sediment diagenesis and benthic flux. In: Elderfield H (ed) Treatise on geochemistry, vol 6. Elsevier, New York, pp 293–319

    Chapter  Google Scholar 

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia 94:457–471

    Article  Google Scholar 

  • Erftemeijer PLA (1994) Differences in Nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia. Bull Mar Sci 54(2):402–419

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA (2012a) Seagrass ecosystems as a significant global carbon stock. Nat Geosci 5:505–509

    Article  Google Scholar 

  • Fourqurean JW, Kendrick GA, Collins LS, Chambers RM, Vanderklift MA (2012b) Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Mar Freshw Res 63:967–983

    Article  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gacia E, Duarte CM, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47(1):23–32

    Article  Google Scholar 

  • Ghosh S, Leff LG (2013) Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community. Appl Environ Microbiol 79(23):7130–7141

    Article  Google Scholar 

  • Gillis LG, Ziegler AD, van Oevelen D, Cathalot C, Herman PMJ, Wolters JW, Bouma TJ (2014) Tiny is mighty: seagrass beds have a large role in the export of organic material in the tropical coastal zone. PLoS ONE 9(11):e111847. https://doi.org/10.1371/journal.pone.0111847

    Article  Google Scholar 

  • Graha YI, Arthana IW, Karang IWGA (2016) Simpanan karbon padang lamun di kawasan pantai Sanur, kota Denpasar (Seagrass carbon stock in Sanur beach area, Denpasar). Ecotrophic 10(1):46–53

    Article  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. UNEP World Conservation Monitoring Center, University of California Press, Berkeley

    Google Scholar 

  • Greiner JT, Wilkinson GM, McGlathery KJ, Emery KA (2016) Sources of sediment carbon sequestered in restored seagrass meadows. Mar Ecol Prog Ser 551:95–105

    Article  Google Scholar 

  • Gullstrom M, Lyimo LD, Dahl M, Samuelsson GS, Eggertsen M, Anderberg E, Rasmusson LM, Linderholm HW, Knudby A, Bandeira S, Nordlund LM, Bjork M (2018) Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant–sediment processes, and landscape context: insights from the western Indian Ocean. Ecosystems 21:551–566

    Article  Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge, p xi+298

    Book  Google Scholar 

  • Hemminga MA, Mateo MA (1996) Stable carbon isotopes in segrasses: variability in ratio and use in ecological studies. Mar Ecol Prog Ser 140:285–298

    Article  Google Scholar 

  • Herbon CM, Nordhaus I (2013) Experimental determination of stable carbon and nitrogen isotope fractionation between mangrove leaves and crabs. Mar Ecol Prog Ser 490:91–105

    Article  Google Scholar 

  • Hernawan UE, Sjafrie NDM, Supriyadi IH, Suyarso, Iswari MY, Anggraini K, Rahmat (2017) Status padang lamun Indonesia (the status of Indonesian seagrasses). Coremap-CTI Pusat Penelitian Oseanografi LIPI, pp 1–23

  • Hoeksema BW (1990) Systematic and ecology of mushroom corals (Scleractinia-Fungiidae). Ph.D. Thesis Leiden Netherland

  • Hoeksema BW (2012) Distribution patterns of mushroom corals (Scleracitnia: Fungiidae) across the Spermonde Shelf, South Sulawesi. Raffles Bull Zool 60(1):183–212

    Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses. Oxford University Press, Oxford, p x+273 pp

    Book  Google Scholar 

  • Holmer M, Olsen AB (2002) Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar Ecol Prog Ser 230:87–101

    Article  Google Scholar 

  • Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36:227–237

    Article  Google Scholar 

  • Hutomo M, Moosa MK (2005) Indonesian marine and coastal biodiversity: present status. Indian J Mar Sci 34(1):88–97

    Google Scholar 

  • Imran AM, Kaharuddin MS, Suriamihardja DA (2013) Geology of Spermonde platform. In: Proceedings of the 7th international conference on Asian and Pacific coasts (APAC 2013) Bali, Indonesia. September 24–26

  • Indriani Wahyudi AJ, Yona D (2017) Carbon Stock in Seagrass Meadows of Bintan Island, Riau Archipelago. Oseanologi dan Limnologi di Indonesia 2(3):1–11 (in Bahasa)

    Article  Google Scholar 

  • Irawan A (2017) The carbon stock and potential uptake of seagrass beds in the northern and eastern part of Bintan Island. Oseanologi dan Limnologi di Indonesia 2(3):35–48 (in Bahasa)

    Article  Google Scholar 

  • Jennerjahn TC, Ittekkot V, Klöpper S, Adi S, Nugroho SP, Sudiana N, Yusmal A, Gaye-Haake B (2004) Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia. Estuar Coast Shelf Sci 60:503–514

    Article  Google Scholar 

  • Jompa J (1996) Monitoring and assessment of coral reef in South Sulawesi Indonesia. Thesis. McMaster University, Hamilton, Canada

  • Kennedy H, Björk M (2009) Seagrass meadows. In: Laffoley DA, Grimsditch D (eds) The management of natural coastal carbon sink. International Union of Conservation for Nature (IUCN) Report. Gland, Switzerland, p 53

  • Kennedy H, Gacia E, Kennedy DP, Papadimitriou S, Duarte CM (2004) Organic carbon sources to SE Asian coastal sediments. Estuar Coast Shelf Sci 60:59–68

    Article  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marba N, Middleburg JJ (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem Cycles 24:GB4026. https://doi.org/10.1029/2010gb003848

    Article  Google Scholar 

  • Kuramoto T, Minagawa M (2001) Stable carbon and nitrogen isotopic characterization of organic matter in a mangrove ecosystem on the southwestern coast of Thailand. J Oceanogr 57:421–431

    Article  Google Scholar 

  • Kusumaningtyas MA, Hutahaean AA, Fischer HW, Pérez-Mayo M, Ransby D, Jennerjahn TC (2019) Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar Coast Shelf Sci 218:310–323

    Article  Google Scholar 

  • Lavery PS, Mateo MA, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8(9):e73748

    Article  Google Scholar 

  • Liu S, Jiang Z, Zhang J, Wu Y, Lian Z, Huang X (2016) Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Pollut Bull 110(1):274–280

    Article  Google Scholar 

  • Mateo MA, Cebrian J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 159–192

    Google Scholar 

  • Mazarrasa I, Marba N, Garcia-Orellana J, Masque P, Arias-Ortiz A, Duarte CM (2017) Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure. Limnol Oceanogr. https://doi.org/10.1002/lno.10509

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman B (2011) A blueprint for blue carbon: towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Ministry of Environment Republic of Indonesia (Kementerian Lingkungan Hidup Republik Indonesia) (2004) Baku mutu air laut untuk biota laut. In: Keputusan Menteri Negara Lingkungan Hidup No. 51 Tahun 2004 Tentang Baku Mutu Air Laut. KLH, Jakarta

  • Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, Nakaoka M (2015) Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochem Cycles 29:379–415

    Article  Google Scholar 

  • Moll H (1984) Zonation and diversity of Scleractina on reefs off South Sulawesi Indonesia. Leiden University, Leiden

    Google Scholar 

  • Moore J (2018) Assessing resilience of community Mangrove management on Tanakeke Island, Indonesia. Master Thesis. National University of Singapore

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52(5):1633–1640

    Article  Google Scholar 

  • Nadiarti Riani E, Djuwita I, Budiharsono S, Purbayanto A, Asmus H (2012) Challenging for seagrass management in Indonesia. J Coast Dev 15(3):234–242

    Google Scholar 

  • Nordhaus I, Salewski T, Jennerjahn TC (2017) Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds. Estuar Coast Shelf Sci 192:137–148

    Article  Google Scholar 

  • Parnell A, Inger R (2016) Stable isotope mixing models in R with simmr. https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html. Accessed Oct 2018

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA (2012) Estimating global ‘‘Blue Carbon’’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9):e43542. https://doi.org/10.1371/journal.pone.0043542

    Article  Google Scholar 

  • Phang VXH, Chou LM, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf Process Landf 40:1387–1400

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed Dec 2017

  • Rahmawati S (2011) Ancaman terhadap komunitas padang lamun (Segrass threats). Oseana 36(2):49–58

    Google Scholar 

  • Raven JA, Johnson AM, Turpin DH (1993) Influence of changes in CO2 concentration and temperature on marine phytoplankton 13C/12C ratios: an analysis of possible mechanisms. Glob Planet Change 8:1–12

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Interscience, Geneva, pp 26–77

    Google Scholar 

  • Ricart AM, York PH, Rasheed MA, Pérez M, Romero J, Bryant CV, Macreadie PI (2015) Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar Pollut Bull 9:032

    Google Scholar 

  • Rozaimi M, Fairoz M, Hakimi TM, Hamdan NH, Omar R, Ali MM, Tahirin SA (2017) Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance. Mar Pollut Bull 119:253–260

    Article  Google Scholar 

  • Rustam A, Kepel TL, Afiati RN, Salim HL, Kusumaningtyas MA, Daulat A, Mangindaan P, Sudirman N, Rahayu YP, Suryono DD, Hutahaean A (2014) Peran Ekosistem Lamun sebagai Blue Carbon dalam Mitigasi Perubahan Iklim, Studi Kasus Tanjung Lesung, Banten. Segara J 10(2):107–117 (in bahasa)

    Google Scholar 

  • Rustam A, Sudirman N, Ati RNA, Salim HL, Rahayu YP (2017) Seagrass ecosystem carbon stock in the small islands: case study in Spermonde island, South Sulawesi, Indonesia. J Segara 13(2):97–106

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    Article  Google Scholar 

  • Supriadi S, Kaswadji RF, Bengen DG, Hutomo M (2014) Carbon stocks of seagrass community in Barranglompo island, Makassar. Ilmu Kelautan 19(1):1–10

    Article  Google Scholar 

  • Teichberg MC, Wild C, Bednarz VN, Kegler HF, Lukman M, Gärdes AA, Plass-Johnson JG (2018) Spatio-temporal patterns in coral reef communities of the Spermonde Archipelago, 2012–2014, I: comprehensive reef monitoring reveals two indices that reflect changes in reef health. Front Mar Sci 5:33. https://doi.org/10.3389/fmars.2018.00033

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Marine Research Center, Ministry of Marine Affairs and Fisheries Republic of Indonesia (DIPA-APBNP) year 2015, in collaboration with the Leibniz Centre for Tropical Marine Research, Bremen, Germany, under “The Science for Indonesian Marine Ecosystems and Fisheries (SIMEF) Project 2014.” The authors would like to thank Blue Carbon Indonesia team—Ministry of Marine Affairs and Fisheries for the support during field survey, and Dorothee Dasbach for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusmiana P. Rahayu or Mariska A. Kusumaningtyas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahayu, Y.P., Solihuddin, T., Kusumaningtyas, M.A. et al. The Sources of Organic Matter in Seagrass Sediments and Their Contribution to Carbon Stocks in the Spermonde Islands, Indonesia. Aquat Geochem 25, 161–178 (2019). https://doi.org/10.1007/s10498-019-09358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-019-09358-7

Keywords

Navigation