Skip to main content

Advertisement

Log in

Time-dependent variations in vertical fluxes of hydrothermal plumes at mid-ocean ridges

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

We investigated the short-period variations in vertical fluxes of hydrothermal plumes at mid-ocean ridges through quantitative analysis of digital video images of plumes using the particle image velocimetry method. The analyzed digital video images of hydrothermal plumes were selected from the V Vent and Biotransect Vent at the fast-spreading East Pacific Rise, the Grotto Mound of the Endeavour Segment at the intermediate fast-spreading Juan de Fuca Ridge, and the TAG vent at the slow-spreading Northern Mid-Atlantic Ridge. The PIV was able to track the motion of turbulent parcels instead of individual particles within a hydrothermal plume. The mean plume vertical flux was shown to increase with increasing height above the vent orifice, revealing significant turbulent disperse of the rising hydrothermal plumes. The dominant periods of oscillation in the mean vertical flux were observed to be within a relatively narrow band width of 0.5–5 s despite diverse geological settings. Such pervasive short-period variations in plume flux are hypothesized to be caused by the pressure-drop oscillation within a network of compressible two-phase fluid within a sub-seafloor hydrothermal source zone. It is further argued that both the period and amplitude of plume flux oscillation might increase with decreasing plume vertical flux. The relatively narrow band width of the observed oscillation periods might reflect common characteristics in the plume dynamics despite diverse geological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Baker ET (2007) Hydrothermal cooling of midocean ridge axes: do measured and modeled heat fluxes agree? Earth Planet Sci Lett 263:140–150

    Article  Google Scholar 

  • Barreyre T, Sohn RA (2016) Poroelastic response of mid-ocean ridge hydrothermal systems to ocean tidal loading: implications for shallow permeability structure. Geophys Res Lett 43:1660–1668

    Article  Google Scholar 

  • Barreyre T, Escartín J, Sohn RA, Cannat M, Ballu V, Crawford WC (2014) Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge. J Geophys Res 119:2543–2566

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol 97:613–623

    Article  Google Scholar 

  • Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD (1990) Geochemistry of hydrothermal fluids from Ashes Vent Field, Axial Seamount, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res 95:895–12922

    Article  Google Scholar 

  • Carbotte SM et al (2004) New integrated data management system for Ridge2000 and Margins Research. EOS Trans AGU 85:553–559

    Article  Google Scholar 

  • Chiapero EM, Fernandino M, Dorao CA (2012) Review on pressure drop oscillations in boiling systems. Nucl Eng Des 250:436–447

    Article  Google Scholar 

  • Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69:159–175

    Article  Google Scholar 

  • Corliss JB et al (1979) Submarine thermal springs on the Galápagos Rift. Science 203:1073–1083

    Article  Google Scholar 

  • Cowan J, Cann J (1988) Supercritical two-phase separation of hydrothermal fluids in the Troodos ophiolite. Nature 333:259–261

    Article  Google Scholar 

  • Crone TJ, Wilcock WSD, Barclay AH, Parsons JD (2006) The sound generated by mid-ocean ridge black smoker hydrothermal vents. PLoS ONE 1:e133

    Article  Google Scholar 

  • Crone TJ, McDuff RE, Wilcock WSD (2008) Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems. Exp Fluids 45:899–915

    Article  Google Scholar 

  • Crone TJ, Wilcock WSD, McDuff RE (2010) Flow rate perturbations in a black smoker hydrothermal vent in response to a mid-ocean ridge earthquake swarm. Geochem Geophys Geosyst 11:Q03012

    Article  Google Scholar 

  • Delaney JR, Mogk DW, Mottl M (1987) Quartz-cemented breccias from the Mid-Atlantic Ridge: samples of a high-salinity hydrothermal upflow zone. J Geophys Res 92:9175–9192

    Article  Google Scholar 

  • Denlinger RP, Hoblitt RP (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27:459–462

    Article  Google Scholar 

  • Edmond J et al (1995) Time series studies of vent fluids from the TAG and MARK sites (1986, 1990). In: Parson LM, Walker CL, Dixon DP (eds) Hydrothermal vents and processes. Mid-Atlantic Ridge: a new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies, vol 87. Geological Society, London, pp 77–86

    Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  Google Scholar 

  • Escartín J, Garcia R, Barreyre T, Cannat M, Gracias N, Shihavuddin A, Mittelstaedt E (2013) Optical methods to monitor temporal changes at the seafloor: the Lucky Strike deep-sea hydrothermal vent field (Mid-Atlantic Ridge). In: Underwater Technology Symposium (UT), 2013 IEEE International, Tokyo, Japan

  • German CR, Von Damm KL (2006) Hydrothermal processes. In: Elderfield H, Holland H, Turekian K (eds) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 181–222

    Google Scholar 

  • Germanovich LN, Hurt RS, Smith JE, Genc G, Lowell RP (2015) Measuring fluid flow and heat output in seafloor hydrothermal environments. J Geophys Res 120:8031–8055

    Article  Google Scholar 

  • Ginster U, Mottl MJ, Von Herzen RP (1994) Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge. J Geophys Res 99:4937–4950

    Article  Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littelton, pp 111–141

    Google Scholar 

  • Jackson DR, Jones CD, Rona PA, Bemis KG (2003) A method for Doppler acoustic measurement of black smoker flow fields. Geochem Geophys Geosyst 4:1095

    Article  Google Scholar 

  • Jiang H, Breier JA (2014) Physical controls on mixing and transport within rising submarine hydrothermal plumes: a numerical simulation study. Deep-Sea Res I 92:41–55

    Article  Google Scholar 

  • Kadko D (1993) An assessment of the effect of chemical scavenging within submarine hydrothermal plumes upon ocean geochemistry. Earth Planet Sci Lett 120:361–374

    Article  Google Scholar 

  • Kakac S, Bon B (2008) A Review of two-phase flow dynamic instabilities in tube boiling systems. Int J Heat Mass Transfer 51:399–433

    Article  Google Scholar 

  • Kakaç S, Veziroǧlu TN, Padki MM, Fu LQ, Chen XJ (1990) Investigation of thermal instabilities in a forced convection upward boiling system. Exp Therm Fluid Sci 3:191–201

    Article  Google Scholar 

  • Karlstrom L et al (2013) Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics. J Geophys Res 118:4048–4062

    Article  Google Scholar 

  • Kelley DS, Robinson PT, Malpas JG (1992) Processes of brine generation and circulation in the oceanic crust: fluid inclusion evidence from the Troodos Ophiolite, Cyprus. J Geophys Res 97:9307–9322

    Article  Google Scholar 

  • Kelley DS, Gillis KM, Thompson G (1993) Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res 98:19579–19596

    Article  Google Scholar 

  • Kozono T, Koyaguchi T (2012) Effects of gas escape and crystallization on the complexity of conduit flow dynamics during lava dome eruptions. J Geophys Res 117:B08204

    Article  Google Scholar 

  • Larson BI, Olson EJ, Lilley MD (2007) In situ measurement of dissolved chloride in high temperature hydrothermal fluids. Geochim Cosmochim Acta 71:2510–2523

    Article  Google Scholar 

  • Larson BI, Lilley MD, Olson EJ (2009) Parameters of subsurface brines and hydrothermal processes 12–15 months after the 1999 magmatic event at the Main Endeavor Field as inferred from in situ time series measurements of chloride and temperature. J Geophys Res 114:B01207

    Google Scholar 

  • Little SA, Stolzenbach KD, Grassle FJ (1988) Tidal current effects on temperature in diffuse hydrothermal flow: Guaymas Basin. Geophys Res Lett 15:1491–1494

    Article  Google Scholar 

  • Liu H, Kakac S (1991) An experimental investigation of thermally induced flow instabilities in a convective boiling upflow system. Heat Mass Transfer 26:365–376

    Google Scholar 

  • Macdonald KC, Becker K, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet Sci Lett 48:1–7

    Article  Google Scholar 

  • McNutt MK et al (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. PNAS 109:20260–20267

    Article  Google Scholar 

  • Mittelstaedt E, Davaille A, Van Keken PE, Gracias N, Escartín J (2010) A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies. Geochem Geophys Geosyst 11:Q10005

    Article  Google Scholar 

  • Mittelstaedt E et al (2012) Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field. Geochem Geophys Geosyst 13:Q04008

    Article  Google Scholar 

  • Mittelstaedt E, Fornari DJ, Crone TJ, Kinsey J, Kelley D, Elend M (2016) Diffuse venting at the ASHES hydrothermal field: heat flux and tidally modulated flow variability derived from in situ time-series measurements. Geochem Geophys Geosyst 17:1435–1453

    Article  Google Scholar 

  • Morton B, Taylor G, Turner J (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc A 234:1–23

    Article  Google Scholar 

  • Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet Sci Lett 102:310–325

    Article  Google Scholar 

  • Oosting S, Von Damm K (1996) Bromide/chloride fractionation in seafloor hydrothermal fluids from 9 to 10 N East Pacific Rise. Earth Planet Sci Lett 144:133–145

    Article  Google Scholar 

  • Padki MM, Liu HT, Kakac S (1991) Two-phase flow pressure-drop type and thermal oscillations. Int J Heat Mass Transfer 12:240–248

    Google Scholar 

  • Papanicolaou PN, List EJ (1988) Investigations of round vertical turbulent buoyant jets. J Fluid Mech 195:341–391

    Article  Google Scholar 

  • Pham MV, Plourde FDR, Kim SD (2005) Three-dimensional characterization of a pure thermal plume. J Heat Transfer 127:624–636

    Article  Google Scholar 

  • Prasad AK (2000) Particle image velocimetry. Curr Sci 79:51–60

    Google Scholar 

  • Ramondenc P, Germanovich LN, Von Damm KL, Lowell RP (2006) The first measurements of hydrothermal heat output at 9˚50′ N, East Pacific Rise. Earth Planet Sci Lett 245:487–497

    Article  Google Scholar 

  • Rona PA, Trivett DA (1992) Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet Sci Lett 109:57–71

    Article  Google Scholar 

  • Rona PA, Bemis KG, Jones CD, Jackson DR, Mitsuzawa K, Silver D (2006) Entrainment and bending in a major hydrothermal plume, Main Endeavour Field, Juan de Fuca Ridge. Geophys Res Lett 33:L19313

    Article  Google Scholar 

  • Ruspini LC, Marcel CP, Clausse A (2014) Two-phase flow instabilities: a review. Int J Heat Mass Transfer 71:521–548

    Article  Google Scholar 

  • Saccocia PJ, Gillis KM (1995) Hydrothermal upflow zones in the oceanic crust. Earth Planet Sci Lett 136:1–16

    Article  Google Scholar 

  • Scheirer DS, Shank TM, Fornari DJ (2006) Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochem Geophys Geosyst 7:Q03002

    Article  Google Scholar 

  • Schultz A, Dickson P, Elderfield H (1996) Temporal variations in diffuse hydrothermal flow at TAG. Geophys Res Lett 23:3471–3474

    Article  Google Scholar 

  • Seyfried W, Seewald J, Berndt M, Ding K, Foustoukos D (2003) Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: geochemical controls in the aftermath of June 1999 seismic events. J Geophys Res 108:2429

    Article  Google Scholar 

  • Sohn RA, Hildebrand JA, Webb SC, Fox CG (1995) Hydrothermal microseismicity at the megaplume site on the southern Juan de Fuca Ridge. Bull Seismol Soc Am 85:775–786

    Google Scholar 

  • Sohn RA, Thomson RE, Rabinovich AB, Mihaly SF (2009) Bottom pressure signals at the TAG deep-sea hydrothermal field: evidence for short-period, flow-induced ground deformation. Geophys Res Lett 36:L19301

    Article  Google Scholar 

  • Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3081–3095

    Article  Google Scholar 

  • Stenning A (1964) Instabilities in the flow of a boiling liquid. J Basic Eng 86:213–217

    Article  Google Scholar 

  • Tivey MK, Bradley AM, Joyce TM, Kadko D (2002) Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth Planet Sci Lett 202:693–707

    Article  Google Scholar 

  • Turner J (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173:431–471

    Article  Google Scholar 

  • Voight B et al (1999) Magma flow instability and cyclic activity at Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1138–1142

    Article  Google Scholar 

  • Von Damm KL (1988) Systematics of and postulated controls on submarine hydrothermal solution chemistry. J Geophys Res 93:4551–4561

    Article  Google Scholar 

  • Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. J Geophys Res 92:11334–11346

    Article  Google Scholar 

  • Wang H, Law AW-K (2002) Second-order integral model for a round turbulent buoyant jet. J Fluid Mech 459:397–428

    Article  Google Scholar 

  • Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436

    Article  Google Scholar 

  • Xu G, Di Iorio D (2012) Deep sea hydrothermal plumes and their interaction with oscillatory flows. Geochem Geophys Geosyst 13:Q0AJ01

    Article  Google Scholar 

  • Xu G, Jackson DR, Bemis KG, Rona PA (2013) Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar. Geochem Geophys Geosyst 14:2369–2382

    Article  Google Scholar 

  • Xu G, Jackson DR, Bemis KG, Rona PA (2014) Time-series measurement of hydrothermal heat flux at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge. Earth Planet Sci Lett 404:220–231

    Article  Google Scholar 

  • Xu G, Larson BI, Bemis KG, Lilley MD (2017) A preliminary 1-D model investigation of tidal variations of temperature and chlorinity at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge. Geochem Geophys Geosyst 18:75–92

    Article  Google Scholar 

  • Zhang W, He Z, Jiang H (2017) Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence. Deep-Sea Res I 129:89–98

    Article  Google Scholar 

  • Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Heckbert PS (ed) Graphics gems IV. Academic Press Professional, Inc., San Diego, pp 474–485

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Jian Zhu for providing technical assistance and Dr. Guangyu Xu for providing the plume videos recorded at the JdFR. This work was supported by the Ministry of Science and Technology 973 Project (2012CB417303), the National Natural Science Foundation of China (91628301, U1606401), the Chinese Academy of Sciences (Y4SL021001, QYZDY-SSW-DQC005), the Chinese National 985 Project (1350141509), the International Exchange Program for Graduate Students, Tongji University (201502) and the Chinese Scholarship Council (201606260207). H.J. was supported by a National Science Foundation Grant NSF OCE-1038055 through the RIDGE2000 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 67441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lin, J. & Jiang, H. Time-dependent variations in vertical fluxes of hydrothermal plumes at mid-ocean ridges. Mar Geophys Res 40, 245–260 (2019). https://doi.org/10.1007/s11001-018-9364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-018-9364-5

Keywords

Navigation