Skip to main content

Advertisement

Log in

Carbon Cycling in Global Drylands

  • Carbon Cycle and Climate (K Zickfeld, JR Melton and N Lovenduski, Section Editors)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this paper is to describe the carbon cycle in drylands in relation to the processes, factors, and causes affecting it. A specific focus is placed on both biotic and abiotic mechanisms of carbon sequestration in drylands in relation to mitigation of the anthropogenic climate change.

Recent Findings

Global dryland area is increasing along with an increase in risks of desertification, salinization, and eolian/hydrologic processes of accelerated soil erosion with strong impacts on the carbon cycle. Nonetheless, drylands contribute strongly towards the land-based sink of the atmospheric carbon dioxide through sequestration of carbon in the soil, ground water, and biomass. Thus, dryland ecosystems affect inter-annual variability in the global carbon cycle and create a negative feedback through carbon sequestration.

Summary

Global drylands, covering 66.7 M km2 or 45.36% of the Earth’s land area, strongly impact the ecosystem carbon stock, contribute to the land-based carbon sink, and provide a negative feedback to the global carbon cycle. Whereas the net primary productivity is limited by the water scarcity, especially in hyper-arid and arid ecoregions, sequestration of inorganic carbon in soil and ground water is an important control of the carbon cycle. Desertification, caused by eolian and hydrologic erosion along with salinization, must be controlled and reversed to enhance carbon sequestration, achieve land degradation neutrality, and create a negative feedback. Carbon sequestration strategy recognizes “soil” as a rights holder to be protected, restored and naturally evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Middleton N, Thomas D. World atlas of desertification. Second Edi. Routledge; 1997.

    Google Scholar 

  2. Safriel U, Adeel Z, Niemeijer D, Puigdefabres J, White R, et al. Dryland systems. In: Ecosyst Hum Wellbeing Curr state trends; 2005.

    Google Scholar 

  3. D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. Global desertification: drivers and feedbacks. Adv Water Resour. 2013;51:326–44.

    Article  Google Scholar 

  4. Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, et al. Soil resources and element stocks in drylands to face global issues. Sci Rep. 2018;8:13788.

    Article  CAS  Google Scholar 

  5. Prăvălie R. Drylands extent and environmental issues. A global approach. Earth-Science Rev. 2016;161:259–78.

    Article  CAS  Google Scholar 

  6. Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2016;6:166–71.

    Article  Google Scholar 

  7. Lal R. Carbon sequestration in dryland ecosystems. Environ Manag. 2004;33:528–44.

    Article  Google Scholar 

  8. FAO. Carbon sequestration in dryland soils. Rome, Italy; 2004.

  9. Bai SG, Jiao Y, Yang WZ, Gu P, Yang J, Liu LJ. Review of progress in soil inorganic carbon research. IOP Conf Ser Earth Environ Sci. 2017;100:012129.

    Article  Google Scholar 

  10. Eswaran H, Reich P, Kimble J, Beinroth F, Padmanabhan E, Moncharoen P. Global carbon stock. In: Lal R, editor. Glob Clim Chang pedogenic carbonates. Boca Raton: Lewis Publications; 2000. p. 15–25.

    Google Scholar 

  11. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature. 2014;509:600–3.

    Article  CAS  Google Scholar 

  12. Blakemore R. Non-flat earth recalibrated for terrain and topsoil. Soil Syst. 2018;2:64.

    Article  CAS  Google Scholar 

  13. Marion GM, Verburg PSJ, McDonald EV, Arnone JA. Modeling salt movement through a Mojave Desert soil. J Arid Environ. 2008;72:1012–33.

    Article  Google Scholar 

  14. Serrano-Ortiz P, Sánchez-Cañete EP, Oyonarte C. The carbon cycle in drylands. Recarbonization Biosph Ecosyst Glob Carbon Cycle. Dordrecht: Springer; 2012. p. 347–68.

    Google Scholar 

  15. Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil. 2011;340:7–24.

    Article  CAS  Google Scholar 

  16. Xu W, Chen X, Lou G. Development of soil carbon cycle research and the prospect of soil carbon cycle research in arid areas. Arid L Geogr. 2011;34:614–20.

    Google Scholar 

  17. Yang L, Li G. Progress in soil inorganic carbon research. Chinese J Soil Sci. 2011;42:986–90.

    CAS  Google Scholar 

  18. Yu J, Fang L, Bian Z. Research progress of soil carbon pool. Acta Ecol Sin. 2014;34:4829–38.

    Article  Google Scholar 

  19. Monger C, Kraimer RA, Khresat S, Cole DR, Wang X, Wang J. Sequestration of inorganic carbon in soil and groundwater. Geology. 2015;43:375–8.

    Article  CAS  Google Scholar 

  20. Wohlfahrt G, Fenstermaker LF, Arnone Iii JA. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Chang Biol. 2008;14:1475–87.

    Article  Google Scholar 

  21. Wang J, Monger C, Wang X, Serena M, Leinauer B. Carbon sequestration in response to Grassland–Shrubland–Turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA. Soil Sci Soc Am J. 2016;80:1591–603.

    Article  CAS  Google Scholar 

  22. Díaz-Hernández JL, Barahona Fernández E, Linares González J. Organic and inorganic carbon in soils of semiarid regions: a case study from the Guadix-Baza basin (Southeast Spain). Geoderma. 2003;114:65–80.

    Article  CAS  Google Scholar 

  23. Schlesinger W. Inorganic carbon: global carbon cycle. In: Lal R, editor. Encycl Soil Sci. Boca Raton: Taylor & Francis; 2006. p. 1203–5.

    Google Scholar 

  24. Laban P, Metternicht G, Davies J. Soil biodiversity and soil organic carbon: keeping drylands alive. Soil Biodivers. soil Org. carbon Keep. drylands alive. Gland, Switzerland. 2018.

  25. Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Chang. 2008;86:375–96.

    Article  CAS  Google Scholar 

  26. Perez-Quezada JF, Delpiano CA, Snyder KA, Johnson DA, Franck N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J Arid Environ. 2011;75:29–37.

    Article  Google Scholar 

  27. He N, Yu Q, Wu L, Wang Y, Han X. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem. 2008;40:2952–9.

    Article  CAS  Google Scholar 

  28. Glenday J. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya. Environ Monit Assess. 2008;142:85–95.

    Article  CAS  Google Scholar 

  29. Goudie A, Wilkinson J. A warm desert environment (Cambridge topics in geography). Cambridge: Cambridge University Press; 1977.

    Google Scholar 

  30. Verrecchia EP, Dumont JL, Rolko KE. Do fungi building limestones exist in semi-arid regions? Naturwissenschaften. 1990;77:584–856.

    Article  CAS  Google Scholar 

  31. Delgado G, Delgado R, Párraga J, Rivadeneyra MA, Aranda V. Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization. Geomicrobiol J. 2008;25:1–3.

    Article  CAS  Google Scholar 

  32. Allen DE, Pringle MJ, Page KL, Dalal RC. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. Rangel J. 2010;32:227–46.

    Article  Google Scholar 

  33. Smith MD. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol. 2011;99:656–63.

    Article  Google Scholar 

  34. Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol. 2015;21:2861–80.

    Article  Google Scholar 

  35. Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, Flach M, et al. Drought, heat, and the carbon cycle: a review. Curr Clim Chang Rep. 2018;4:266–86.

    Article  Google Scholar 

  36. Ravi S, Breshears DD, Huxman TE, D’Odorico P. Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology. 2010;116:236–45.

    Article  Google Scholar 

  37. Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, et al. Carbon stock and its responses to climate change in Central Asia. Glob Chang Biol. 2015;21:1951–67.

    Article  Google Scholar 

  38. DeLong C, Cruse R, Wiener J. The soil degradation paradox: compromising our resources when we need them the most. Sustain. 2015;7:866–79.

    Article  Google Scholar 

  39. Ibrahim YZ, Balzter H, Kaduk J, Tucker CJ. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015;7:5471–94.

    Article  Google Scholar 

  40. Tully K, Sullivan C, Weil R, Sanchez P. The state of soil degradation in sub-Saharan Africa: baselines, trajectories, and solutions. Sustain. 2015;7:6523–52.

    Article  CAS  Google Scholar 

  41. Zingore S, Mutegi J, Agesa B, Tamene L, Kihara J. Soil degradation in sub-Saharan Africa and crop production options for soil rehabilitation. Better Crop. 2015;99:24–6.

    Google Scholar 

  42. Lal R. Soil erosion and the global carbon budget. Environ Int. 2003;29:437–50.

    Article  CAS  Google Scholar 

  43. Tamene L, Le QB. Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutr Cycl Agroecosyst. 2015;102:17–31.

    Article  Google Scholar 

  44. Darwish T, Fadel A. Mapping of soil organic carbon stock in the Arab countries to mitigate land degradation. Arab J Geosci. 2017;10:474.

    Article  CAS  Google Scholar 

  45. Brazier RE, Turnbull L, Wainwright J, Bol R. Carbon loss by water erosion in drylands: implications from a study of vegetation change in the south-west USA. Hydrol Process. 2014;28:2212–22.

    Article  CAS  Google Scholar 

  46. Turnbull L, Wainwright J, Brazier RE. A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrol Ecosyst L Water Process Interact Ecohydrogeomorphol. 2008;1:23–34.

    Google Scholar 

  47. Turnbull L, Wainwright J, Brazier RE. Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol Process. 2010;24:393–414.

    Google Scholar 

  48. Chappell A, Webb NP, Leys JF, Waters CM, Orgill S, Eyres MJ. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ Sci Pol. 2019;93:43–52.

    Article  CAS  Google Scholar 

  49. Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND, Erlewein A, et al. Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol. 2018;79:25–35.

    Article  Google Scholar 

  50. FAO. Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy; 2005.

    Google Scholar 

  51. Rengasamy P. Salinity in the landscape: a growing problem in Australia. Geotimes. 2008;53:34.

    Google Scholar 

  52. Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, et al. Soil salinity decreases global soil organic carbon stocks. Sci Total Environ. 2013;465:267–72.

    Article  CAS  Google Scholar 

  53. Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708–21.

    Article  Google Scholar 

  54. Rutledge S, Campbell DI, Baldocchi D, Schipper LA. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Chang Biol. 2010;16:3065–74.

    Google Scholar 

  55. Austin AT, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 2006;442:555–8.

    Article  CAS  Google Scholar 

  56. Brandt LA, Bonnet C, King JY. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res Biogeosci. 2009;114:G022004.

    Google Scholar 

  57. Chambers A, Lal R, Paustian K. Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per thousand initiative. J Soil Water Conserv. 2016;71:68A–76A.

    Article  Google Scholar 

  58. Hoyle FC, D’Antuono M, Overheu T, Murphy DV. Capacity for increasing soil organic carbon stocks in dryland agricultural systems. Soil Res. 2014;51:657–67.

    Article  CAS  Google Scholar 

  59. Farage PK, Ardö J, Olsson L, Rienzi EA, Ball AS, Pretty JN. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: a modelling approach. Soil Tillage Res. 2007;94:457–72.

    Article  Google Scholar 

  60. Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, et al. Impact of priming on global soil carbon stocks. Glob Chang Biol. 2018;24:1873–83.

    Article  Google Scholar 

  61. Keller AA, Goldstein RA. Impact of carbon storage through restoration of drylands on the global carbon cycle. Environ Manag. 1998;22:757–66.

    Article  CAS  Google Scholar 

  62. Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Chang. 2001;15:35–72.

    Article  Google Scholar 

  63. Squires V, Glenn E, Ayoub A. Combating global climate change by combating land degradation. Nairobi, Kenya: United Nations Environment Programme; 1995.

    Google Scholar 

  64. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, et al. Global carbon budget 2017. Earth Syst Sci Data. 2018;10:405–48.

    Article  Google Scholar 

  65. Lal R, Hassan H, Dumanski J. Desertification control to sequester C and mitigate the greenhouse effect. In: Carbon sequestration soils Sci Monit beyond; 1999. p. 83–107.

    Google Scholar 

  66. Schlesinger WH. An evaluation of abiotic carbon sinks in deserts. Glob Chang Biol. 2017;23:25–7.

    Article  Google Scholar 

  67. Zimov SA, Schuur EAG, Stuart Chapin F. Permafrost and the global carbon budget. Science (80- ). 2006;312:1612–3.

    Article  CAS  Google Scholar 

  68. WMO. Greenhouse Gas Bulletin: The state of the greenhouse gases in the atmosphere based on global observations through 2017. Switzerland: Geneva; 2018.

    Google Scholar 

  69. Overeem I, Jafarov E, Wang K, Schaefer K, Stewart S, Clow G, et al. Modeling the melting permafrost. Eos (Washington DC). 2019;100:30–4.

    Google Scholar 

  70. Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA, Fenstermaker LF, et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO 2. Nat Clim Chang. 2014;4:394–7.

    Article  CAS  Google Scholar 

  71. Baldocchi D, Penuelas J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob Chang Biol. 2019;25:1191–7.

    Article  Google Scholar 

  72. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems. 2006;9:1041–50.

    Article  CAS  Google Scholar 

  73. UNCCD. The great green wall for the Sahara: the global mechanism. Bonn, Germany; 2015.

    Google Scholar 

  74. Herrmann SM, Anyamba A, Tucker CJ. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang. 2005;15:394–404.

    Article  Google Scholar 

  75. Trost B, Prochnow A, Drastig K, Meyer-Aurich A, Ellmer F, Baumecker M. Irrigation, soil organic carbon and N2O emissions. A review. Agron Sustain Dev. 2013;33:733–49.

    Article  CAS  Google Scholar 

  76. Haverd V, Raupach MR, Briggs PR, Canadell JG, Davis SJ, Law RM, et al. The Australian terrestrial carbon budget. Biogeosciences. 2013;10:851–69.

    Article  CAS  Google Scholar 

  77. Cleverly J, Boulain N, Villalobos-Vega R, Grant N, Faux R, Wood C, et al. Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. J Geophys Res Biogeosci. 2013;118:1168–85.

    Article  CAS  Google Scholar 

  78. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.

    Article  CAS  Google Scholar 

  79. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol. 2012;18:1781–96.

    Article  Google Scholar 

  80. Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60.

    Article  CAS  Google Scholar 

  81. Vidal A, Hirte J, Bender SF, Mayer J, Gattinger A, Höschen C, et al. Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere. Front Environ Sci. 2018;6:9.

    Article  Google Scholar 

  82. Blankinship JC, Berhe AA, Crow SE, Druhan JL, Heckman KA, Keiluweit M, et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry. 2018;140:1–3.

    Article  CAS  Google Scholar 

  83. Gao Y, Tian J, Pang Y, Liu J. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Front Plant Sci. 2017;8:1282.

    Article  Google Scholar 

  84. Wang JP, Wang XJ, Zhang J, Zhao CY. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China. Eur J Soil Sci. 2015;66:95–103.

    Article  CAS  Google Scholar 

  85. Han X, Gao G, Chang R, Li Z, Ma Y, Wang S, et al. Changes in soil organic and inorganic carbon stocks in deep profiles following cropland abandonment along a precipitation gradient across the Loess Plateau of China. Agric Ecosyst Environ. 2018;258:1–3.

    Article  Google Scholar 

  86. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91.

    Article  CAS  Google Scholar 

  87. Kremen C, Merenlender AM. Landscapes that work for biodiversity and people. Science (80- ). 2018;362:eaau6020.

    Article  CAS  Google Scholar 

  88. Schlesinger WH, Amundson R. Managing for soil carbon sequestration: let’s get realistic. Glob Chang Biol. 2019;25:386–9.

    Google Scholar 

  89. Chapron G, Epstein Y, López-Bao JV. A rights revolution for nature: introduction of legal rights for nature could protect natural systems from destruction. Science (80- ). 2019;363:1392–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The research is sponsored by the Carbon Management and Sequestration Center of The Ohio State University, Columbus, Ohio, 43210, USA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Carbon Cycle and Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, R. Carbon Cycling in Global Drylands. Curr Clim Change Rep 5, 221–232 (2019). https://doi.org/10.1007/s40641-019-00132-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-019-00132-z

Keywords

Navigation