Skip to main content
Log in

Insights on the process of two-stage coronae formation at olivine-plagioclase contact in mafic dyke from Palghat Cauvery Shear Zone, southern India

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Coronae between olivine and plagioclase are a common replacement texture in mafic rocks by magmatic and metamorphic processes. Mafic dykes from Palghat Cauvery Shear Zone (PCSZ) of the granulite terrane of southern India display such multilayer coronae between olivine (Ol) and plagioclase (Pl), composed of orthopyroxene-magnetite (OM) and amphibole (Prg). Deformation twins, kinking, bending and fractures in plagioclase laths suggest that the rock underwent post-emplacement deformation. However, amphibole in the plagioclase fractures and preservation of delicate coronae texture indicate that the replacement texture grew in a static condition. Field occurrence and textural relations suggest that the coronae developed in two stages: (1) Stage-I: Ol → OM, followed by (2) Stage-II: OM + Pl = Prg during rehydration of the granulite host rock. Balanced chemical reactions and formation of hydrous amphibole at the expense of anhydrous reactants during Stage-II demonstrates that replacement of earlier minerals occurred in a fluid-present open system. Results from the pseudosection and the μMgO–μCaO phase diagram, suggest fluid played a crucial role in the transition from Stage-I to Stage-II corona at a P-T condition of ~650 ± 50 °C and 5.5–6 kbar. The multilayer coronae is likely to have resulted from late Neoproterozoic thermal metamorphism of granulite terrane of southern India during Pan-African orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ambler EP, Ashley PM (1977) Vermicular orthopyroxene-magnetite symplectites from the Wateranga layered mafic intrusion, Queensland, Australia. Lithos 10:163–172

    Article  Google Scholar 

  • Ashworth JR (1986) The role of magmatic reaction, diffusion, and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway: a discussion. Mineral Mag 50:469–473

    Article  Google Scholar 

  • Barton M, Van Gaans C (1988) Formation of orthopyroxene Fe-Ti oxide symplectites in Precambrian intrusives, Rogaland, southwestern Norway. Am Mineral (73):1046–1953

  • Bhaskar Rao YJ, Chetty TRK, Janardhan AS, Gopalan K (1996) Sm–Nd and Rb–Sr ages and P-T-history of the Archaean Sittampundi and Bhavani layered metaanorthosite complexes in Cauvery shear zone, South India: evidence for Neoproterozoic reworking of Archaean crust. Contrib Mineral Petrol 125:237–250

    Article  Google Scholar 

  • Bosi F, Biagioni C, Pasero M (2019) Nomenclature and classification of the spinel supergroup. Eur J Mineral 31:183–192

    Article  Google Scholar 

  • Brandt S, Raith MM, Schenk V, Sengupta P, Srikantappa C, Gerdes A (2014) Crustal evolution of the southern granulite terrane, South India: new geochronological and geochemical data for felsic orthogneisses and granites. Precambrian Res 246:91–122

    Article  Google Scholar 

  • Braun I, Kriegsman LM (2003) Proterozoic crustal evolution of southernmost India and Sri Lanka. Geological Society of London 206:169–202

    Article  Google Scholar 

  • Burns LE (1985) The border ranges ultramafic and mafic complex, south-Central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22:1020–1038

    Article  Google Scholar 

  • Candia FMA, Mazzucchelli M, Siena F (1989) Sub-solidus reactions and corona structures in the Niquelândia layered complex (Central Goiás, Brazil). Miner Petrol 40:17–37

    Article  Google Scholar 

  • Chetty TRK (1996) Proterozoic shear zones in southern granulite terrain, India. The Archaean and Proterozoic Terrains in Southern India within East Gondwana 3:77–89

    Google Scholar 

  • Chowdhury, P, Talukdar, M, Sengupta, P, Sanyal S, and Mukhopadhyay, D (2013): Controls of P-T path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India. Am Mineral (98/10): 1725–1737

  • Claeson DT (1998) Coronas, reaction rims, symplectites and emplacement depth of the Rymmen gabbro, Transscandinavian Igneous Belt, southern Sweden. Mineral Mag 62:743–757

    Article  Google Scholar 

  • Clark C, Collins AS, Santosh M, Taylor R, Wade BP (2009a) The P–T–t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. Precambrian Res 174:129–144

    Article  Google Scholar 

  • Clark C, Collins AS, Timms NE, Kinny PD, Chetty TRK, Santosh M (2009b) SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem block, southern India. Gondwana Res 16:27–36

    Article  Google Scholar 

  • Collins AS, Windley BF (2002) The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. J Geol 110:325–340

    Article  Google Scholar 

  • Collins AS, Clark C, Sajeev K, Santosh M, Kelsey DE, Hand M (2007) Passage through India: the Mozambique Ocean suture, high pressure granulites and the Palghat-Cauvery shear system. Terra Nova 19(2):141–147

    Article  Google Scholar 

  • Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the southern granulite terrain and its Gondwanan counterparts. Gondwana Res 25(1):190–203

    Article  Google Scholar 

  • Cruciani G, Franceschelli M, Groppo C, Brogioni N, Vaselli O (2008) Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from Sierra de San Luis (Argentina): a key to post-magmatic evolution. J Metamorph Geol 26:759–774

    Article  Google Scholar 

  • Dasgupta S, Sengupta P, Mondal A, Fukuoka M (1993) Mineral chemistry and reaction textures in metabasites from the eastern Ghats belt, India and their implications. Mineral Mag 57:113–120

    Article  Google Scholar 

  • De Haas GJL, Nijland TG, Valbracht PJ, Maijer C, Verschure R, Andersen T (2002) Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contrib Mineral Petrol 143(5):537–550

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Dutta U, Bhui UK, Sengupta P, Sanyal S, Mukhopadhyay D (2011) Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India. Ore Geol Rev 40:90–107

    Article  Google Scholar 

  • Esbensen KH (1978) Coronites from the Fongen gabbro complex, Trondheim region, Norway: role of water in olivine-plagioclase reaction. Neues Jahrbuch für Mineralogie – Abhandlungen (132):113–135

  • Faryad SW, Kachlik V, Sláma J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian zone (bohemian massif). J Metamorph Geol 33:295–310

    Article  Google Scholar 

  • Fisher GW (1989) Matrix analysis of metamorphic mineral assemblages and reactions. Contrib Mineral Petrol 102(1):69–77

    Article  Google Scholar 

  • Frodesen S (1968) Coronas around olivine in a small gabbro intrusion, Bamble area, South Norway. Nor Geol Tidsskr (48):201–206

  • Fusseis F, Liu J, Hough RM, De Carlo F (2009) Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature 459:974–977

    Article  Google Scholar 

  • Gallien F, Mogessie A, Hauzenberger CA, Bjerg E, Delpino S, Castro De Machuca B (2012) On the origin of multi-layer coronas between olivine and plagioclase at the gabbro–granulite transition, Valle Fértil–La Huerta ranges, San Juan Province, Argentina. J Metamorph Geol 30(3):281–302

    Article  Google Scholar 

  • Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the southern granulite terrain of India, with implications for Gondwana studies. Tectonics 23(3):1–38

    Article  Google Scholar 

  • Gill, JB (1981) What is “typical Calcalkaline andesite”? In: Orogenic Andesites and plate tectonics. Springer publishers, Heidelberg/DE. Minerals and Rocks (16): 1–12

  • Glorie S, De Grave J, Singh T, Payne JL, Collins AS (2014) Crustal root of the eastern Dharwar craton: zircon U–Pb age and Lu–Hf isotopic evolution of the East Salem block, Southeast India. Precambrian Res 249:229–246

    Article  Google Scholar 

  • Goode ADT (1974) Oxidation of natural olivines. Nature 248(5448):500–501

    Article  Google Scholar 

  • Green ECR, Holland TJB, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogitic rocks. Am Mineral 92:1181–1189

    Article  Google Scholar 

  • Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34:845–869

    Article  Google Scholar 

  • Griffin WL (1971) Genesis of coronas in anorthosites of the upper Jotun nappe, Indre Sogn, Norway. J Petrol 12:219–243

    Article  Google Scholar 

  • Griffin WL, Heier KS (1973) Petrological implications of some corona structures. Lithos 6(4):315–335

    Article  Google Scholar 

  • Haggerty SE, Baker I (1967) The alteration of olivine in basaltic and associated lavas. Part I: high temperature alteration. Contrib Mineral Petrol 16(16):233–257

    Article  Google Scholar 

  • Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in South India: constraints from Nd isotopes. J Geol 102(2):139–150

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch M (2012) IMA report – nomenclature of the amphibole supergroup. Am Mineral (97):2031–2048

  • Hoisch TD, Wells ML, Beyene MA, Styger S, Vervoort JD (2014) Jurassic Barrovian metamorphism in a western U.S. cordilleran metamorphic core complex, Funeral Mountains, California. Geology 42:399–402

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol (16):309–343

  • Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Holland TJB, and Powell R (2015): A program to calculate activities of mineral endmembers from chemical analyses University of Cambridge. Retrieved from http://www.esc.cam.ac.uk/research/research-groups/research-projects/tim-hollands-software-pages/ax

  • Humphries, DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks (24): 83 pp

  • Jašarová P, Racek M, Jeřábek P, Holub FV (2016) Metamorphic reactions and textural changes in coronitic metagabbros from the Teplá crystalline and Mariánské Lázně complexes, bohemian massif. J Geosci 61:193–219

    Article  Google Scholar 

  • Jayananda M, Peucat JJ (1996) Geochronological framework of southern India, in the Archean and Proterozoic terrains of southern India within East Gondwana. Gondwana Res 3:53–75

    Google Scholar 

  • Joesten R (1974) Local equilibrium and metasomatic growth of zoned calcsilicate nodules from a contact aureole, Christmas Mountains, big bend region, Texas. Am J Sci 274:876–901

    Article  Google Scholar 

  • Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41:649–670

    Article  Google Scholar 

  • Joesten R (1986) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral Mag 50:441–467

    Article  Google Scholar 

  • Johansson Å, Andersson UB, Hålenius U (2012) Petrogenesis and geotectonic setting of early Svecofennian arc cumulates in the Roslagen area, east-central Sweden. Geol J 47:557–593

    Article  Google Scholar 

  • Kendrick JL, Jamieson RA (2016) The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario. Lithos 260:356–370

    Article  Google Scholar 

  • Khan, MA, Jan, MQ, Windley, BF, Tarney, J, and Thirlwall, MF (1989): The Chilas Mafic-Ultramafic Igneous Complex; The root of the Kohistan Island Arc in the Himalaya of northern Pakistan. Geol Soc Am (232): 75–94

  • Koizumi T, Tsunogae T, Santosh M, Tsutsumi Y, Chetty TRK, Saitoh Y (2014) Petrology and zircon U–Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in southern India. J Asian Earth Sci 95:51–64

    Article  Google Scholar 

  • Koshimoto S, Tsunogae T, Santosh M (2004) Sapphirine and corundum bearing ultrahigh temperature rocks from the Palghat-Cauvery shear system, southern India. J Mineral Petrol Sci 99(5):298–310

    Article  Google Scholar 

  • Lang HM, Rice JM (1985) Regression modelling of metamorphic reactions in metapelites, Snow Peak, northern Idaho. J Petrol 26:857–887

    Article  Google Scholar 

  • Lang HM, Watcher AJ, Peterson VL, Ryan JG (2004) Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolite from the Buck Creek ultramafic body, North Carolina blue ridge. Am Mineral 89:20–30

    Article  Google Scholar 

  • Larikova TL, Zaraisky GP (2009) Experimental modelling of corona textures. J Metamorph Geol 27:139–151

    Article  Google Scholar 

  • Locock AJ (2014) An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11

    Article  Google Scholar 

  • Markl G, Foster CT, Bucher K (1998) Diffusion-controlled olivine corona textures in granitic rocks from Lofoten, Norway: calculation of Onsager diffusion coefficients, thermodynamic modelling and petrological implications. J Metamorph Geol 16:607–623

    Article  Google Scholar 

  • McSween HY, Nystrom PG (1979) Mineralogy and petrology of the Dutchmans Creek gabbroic intrusion, S Carolina. Am Mineral (64):531–545

  • Meiβner B, Deters P, Srikantappa C, Köhler H (2002) Geological evolution of the Moyar, Bhavani and Palghat shear zones of southern India: implications for Gondwana correlation. Precambrian Res (114):149–175

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76

  • Morton RD, Batey RH, O’Nions RK (1970) Geological investigations in the Bamble sector of the Fennoscandian shield in South Norway I. the geology of eastern Bamble sector. Norges Geologiske Undersokelse Bulletin (263):1–72

  • Mongkoltip P, Ashworth JR (1983) Quantitative estimation of an open-system symplectite-forming reaction: restricted diffusion of Al and Si in coronas around olivine. J Petrol 24:635–661

    Article  Google Scholar 

  • Muir ID, Tilley CE, Scoon JH (1957) The picrite-basalts of Kilauea, [part] 1 of contributions to the petrology of Hawaiian basalts. Am J Sci 255(4):241–253

    Article  Google Scholar 

  • Mukai H, Austrheim H, Putnis CV, Putnis A (2014) Textural evolution of plagioclase feldspar across a shear zone: implications for deformation mechanism and rock strength. J Petrol 55:1457–1477

    Article  Google Scholar 

  • Mukhopadhyay D, Kumar PS, Srinivasan R, Bhattacharya T (2003) Nature of the Palghat-Cauvery lineament in the region south of Namakkal, Tamil Nadu: implications for terrane assembly in the south Indian granulite province. J Geol Soc India 50:279–296

    Google Scholar 

  • Murthy MVN (1958) Coronites from India and their bearing on the origin of coronas. Geol Soc Am Bull 68:23–28

    Article  Google Scholar 

  • Nasipuri P, Bhattacharya A, Das S (2009) Metamorphic reactions in dry and aluminous granulites: a Perple_X P–T pseudosection analysis of the influence of effective reaction volume. Contrib Mineral Petrol 157:301–311

    Article  Google Scholar 

  • Nishimiya Y, Tsunogae T, Santosh M (2008) Petrology and fluid inclusions of garnet-clinopyroxene rocks from Paramati in the Palghat-Cauvery Shear Zone system, southern India. J Mineral Petrol Sci 103(5):354–360

    Article  Google Scholar 

  • Nishimiya Y, Tsunogae T, Santosh M (2010) Sapphirine+quartz corona around magnesian (X Mg~ 0.58) staurolite from the Palghat-Cauvery Suture Zone, southern India: evidence for high-pressure and ultrahigh-temperature metamorphism within the Gondwana suture. Lithos (114/3):490–502

  • Papike JJ (1987) Chemistry of the rock-forming silicates: Ortho, ring, and single-chain structures. Rev Geophys 25(7):1483–1526

    Article  Google Scholar 

  • Papike JJ (1988) Chemistry of the rock-forming silicates: multiple-chain, sheet, and framework structures. Rev Geophys 26(3):407–444

    Article  Google Scholar 

  • Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette JL (2013) The lower crust of the Dharwar craton, southern India: patchwork of Archean granulitic domains. Precambrian Res 227:4–28

    Article  Google Scholar 

  • Plavsa D, Collins AS, Foden JD, Clark C (2015) The evolution of a Gondwanan collisional orogen: a structural and geochronological appraisal from the southern granulite terrane, South India. Tectonics 34(5):820–857

    Article  Google Scholar 

  • Polat A, Fryer BJ, Samson IM, Weisener C, Appel PWU, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambrian Res 214-215(214–215):124–153

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Radhakrishna T, Maluski H, Mitchell JG, Joseph M (1999) 40Ar/39Ar and K/Ar geochronology of the dykes from the south Indian granulite terrain. Tectonophysics 304:109–129

    Article  Google Scholar 

  • Raith MM, Sengupta P, Kooijman E, Upadhyay D, Srikantappa C (2010) Corundum leucosome–bearing aluminous gneiss from Ayyarmalai, southern granulite terrane, India: a textbook example of vapour phase-absent muscovite-melting in silica undersaturated aluminous rocks. Am Mineral 95:897–907

    Article  Google Scholar 

  • Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai Province. J Petrol 57(9):1729–1774

    Google Scholar 

  • Ram Mohan M, Satyanarayana M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2013) Neoarchean suprasubduction zone arc magmatism in southern India: geochemistry, zircon U–Pb geochronology and Hf isotopes of the Sittampundi Anorthosite complex. Gondwana Res 23:539–557

    Article  Google Scholar 

  • Reynolds RC, Frederickson AF (1962) Corona development in Norwegian hyperites and their bearing upon the metamorphic facies concept. Geol Soc Am Bull 73(1):59

    Article  Google Scholar 

  • Rivers T, Mengel FC (1988) Contrasting assemblages and petrogenetic evolution of corona and noncorona gabbros in the Grenville Province of western Labrador. Can J Earth Sci 25:1629–1648

    Article  Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem Geol 383:132–146

    Article  Google Scholar 

  • Saitoh Y, Tsunogae T, Santosh M, Chetty TRK, Horie K (2011) Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery suture zone, southern India. J Asian Earth Sci 42(42):268–285

    Article  Google Scholar 

  • Sajeev K, Windley BF, Connolly JAD, Kon Y (2009) Retrogressed eclogite (20 kbar, 1020°C) from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambrian Res 171:23–36

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009a) Anatomy of a Cambrian suture in Gondwana: Pacific type orogeny in southern India? Gondwana Res 16:321–341

    Article  Google Scholar 

  • Santosh M, Tsunogae T, Tsutsumi Y, Imamura MM (2009b) Texturally controlled monazite chronology of ultrahigh-temperature granulites from southern India: implications for the timing of Gondwana assembly. Island Arc 18(2):248–265

    Article  Google Scholar 

  • Santosh M, Xiao W, Tsunogae T, Chetty TRK, Yellappa T (2012) The Neoproterozoic subduction complex southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Res 192–195:190–208

    Article  Google Scholar 

  • Sederholm J (1916) On synartectic minerals. Comm Géol Fin Bull (48):1–59

  • Sengupta P, Bhui UK, Braun I, Dutta U, Mukhopadhyay D (2009a) Chemical substitutions, paragenetic relations and physical conditions of högbomite in Sittampundi layered anorthosite complex, South India. Am Mineral 94:1520–1534

    Article  Google Scholar 

  • Sengupta P, Dutta U, Bhui U, Mukhopadhyay D (2009b) Genesis of wollastonite- and grandite-rich skarns in a suite of marble–calc–silicate rocks from Sittampundi, Tamil Nadu: constraints on the P–T–fluid regime in parts of the pan-African mobile belt of South India. Miner Petrol 95:179–200

    Article  Google Scholar 

  • Sengupta, P, Raith, MM, Kooijman, E, Talukdar, M, Chowdhury, P, Sanyal, and S Mukhopadhyay, D (2015): Provenance, timing of sedimentation and metamorphism of metasedimentary rock suites from the Southern Granulite Terrane, India. Geological Society, London, Memoirs (43/1): 297–308

  • Shimpo M, Tsunogae T, Santosh M (2006) First report of garnet–corundum rocks from southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. Earth Planet Sci Lett 242(1):111–129

    Article  Google Scholar 

  • Spruzeniece L, Piazolo S, Daczko N, Kilburn MR, Putnis A (2016) Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J Metamorph Geol 35(3):281–299

    Article  Google Scholar 

  • Srikantappa, C, Srinivas, G, Basavarajappa, HT, Prakash Narasimha, KN, and Basavalingu, B (2003): Metamorphic evolution and fluid regime in the deep continental crust and long the N–S Geotransect from Vellar to Dharapuram, southern India. In M. Ramakrishnan, Ed., Tectonics of the Southern Granulite Terrain. Geological Society of India 50: pp 319–373

  • Svahnberg H, Piazolo S (2013) Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite-leucogabbro deformed at amphibolite facies conditions. Contrib Mineral Petrol 165:543–562

    Article  Google Scholar 

  • Torres-Roldan RL, Garcia-Casco A, Garcia-Sanchez PA (2000) C-space: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793

    Article  Google Scholar 

  • Tuisku P, Makkonen HV (1999) Spinel-bearing symplectites in Palaeoproterozoic ultramafic rocks from two different geological settings in Finland: thermobarometric and tectonic implications. Geol Fören Stockh Förh 121:293–300

    Google Scholar 

  • Turner SP, Stuewe K (1992) Low-pressure corona textures between olivine and plagioclase in unmetamorphosed gabbros from Black Hill, South Australia. Mineral Mag 56:503–509

    Article  Google Scholar 

  • Van Lamoen H (1979) Coronas in olivine gabbros and iron ores from Susimaki and Riuttamaa, Finland. Contrib Mineral Petrol 68:259–268

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave block Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • White RW, Powell R, Baldwin JA (2008) Calculated phase equilibria involving chemical potentials to investigate the textural evolution of metamorphic rocks. J Metamorph Geol 26:181–198

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yellappa T, Venkatasivappa V, Koizumi T, Chetty TRK, Santosh M, Tsunogae T (2014) The mafic–ultramafic complex of Aniyapuram, Cauvery suture zone, southern India: petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics. J Asian Earth Sci 95:81–98

    Article  Google Scholar 

  • Zeck HP, Shenouda HH, Rønsbo JG, Poorter RPE (1982) Hypersthene-ilmenite (/magnetite) symplectites in coronitic olivine-gabbronorites. Lithos 15(3):173–182

    Article  Google Scholar 

Download references

Acknowledgements

M.B., U.D. and R.A. acknowledge CRF facility hosted in IIT (ISM), Dhanbad. Z.A. acknowledges the support from School of Geosciences, University of South Florida. U.D. acknowledges the financial support from SERB (SR/FTP/ES/115/2012), New Delhi. U.D. expresses sincere gratitude to Sengupta, P. for providing some of the samples and data for this study. We want to thank Racek, M. and Sharkov, E. V. for their critical review on the earlier versions of the manuscript. Broekmans, M. A.T.M. and Faryad, S. W. are thanked for their editorial comments and many helpful suggestions on the manuscript. We thank Sengupta, P., Karmakar, S., Mukhopadhyay, D. and Bhui, U. K. for their valuable opinion on several aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upama Dutta.

Additional information

Editorial handling: S. W. Faryad

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, M., Dutta, U., Anand, R. et al. Insights on the process of two-stage coronae formation at olivine-plagioclase contact in mafic dyke from Palghat Cauvery Shear Zone, southern India. Miner Petrol 113, 625–649 (2019). https://doi.org/10.1007/s00710-019-00674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00674-y

Keywords

Navigation