Skip to main content
Log in

Chemotaxic Responses of Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) to Odors of Larvae, Pupae, and the Diet of Lasioderma serricorne (Fabricius) (Coleoptera: Ptinidae)

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Many hymenopteran parasitoids are known as biocontrol agents, such as Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), which is known to parasitize larvae and pupae of coleopteran pests including Lasioderma serricorne (Fabricius) (Coleoptera: Ptinidae). The success of these parasitoids is related to their searching ability, which is mediated through chemical stimuli of the habitat, food, and the progeny of the host itself. This study aimed to assess the chemotaxic responses of A. calandrae comparing the reproductive state of the insects and the experience of wasp females, to different development stages (larvae and pupae) and the presence or absence of the host diet. The chemotaxic responses of A. calandrae individuals at 2 to 4 days old were assessed in a “Y” type olfactometer. Virgin and paired females (without and with previous experience of parasitism) were exposed to larvae of last instar contrasted with pupae and to the diet of L. serricorne. Both virgin and mated males were tested only for diet. Virgin females showed a preference for the diet in contrast to the larvae and to the pupae in contrast to the diet. Paired females without experience choose larvae over diet and made no distinction between pupae and diet. Experienced mated females showed preference for the host to which it had access before, instead of any other alternative option, indicating that there may be changes in the preference through learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  • Arbogast RT, Mullen MA (1990) Interaction of maize weevil (Coleoptera: Curculionidae) and parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae) in a small bulk of stored corn. J Econ Entomol 83:2462–2468

    Article  Google Scholar 

  • Athié I, de Paula DC (2002) Insetos de grãos armazenados: aspectos biológicos e identificação, 2nd edn. São Paulo, Varela Editora, 244 p

    Google Scholar 

  • Ayres M, Ayres MJR, Ayres DL, dos Santos AS (2007) BioEstat 5.0 aplicações estatísticas na área das ciências biológicas e médicas. Belém, Sociedade Civil Mamirauá/CNPq, 324 p

  • Belda C, Riudavets J (2010) Attraction of the parasitoid Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) to odors from grain and stored product pests in a Y-tube olfactometer. BioControl 54:29–34

    Google Scholar 

  • Belda C, Riudavets J (2012) Reproduction of the parasitoids Anisopteromalus calandrae (Howard) and Lariophagus distinguendus (Förster) on arenas containing a mixed population of the coleopteran pests Sitophilus oryzae and Rhyzopertha dominica. J Pest Sci 85:381–385

    Article  Google Scholar 

  • Darwish E, El-Shazly M, El-Sherif H (2003) The choice of probing sites by Bracon hebetor Say (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J Stored Prod Res 39:265–276

    Article  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  Google Scholar 

  • Germinara GS, de Cristofaro A, Rotundo G (2016) Electrophysiological and behavioral responses of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) to cereal grain volatiles. Biomed Res Int:1–8

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. In: Krebs JR, Clutton-Brock T (eds) Monoraphs in behavior and ecology. Princeton University Press, New Jersey 461p

    Google Scholar 

  • Guertin DS, Ode PJ, Strand MR, Antolin MF (1996) Host-searching and mating in an outbreeding parasitoid wasp. Ecol Entomol 1:27–33

    Article  Google Scholar 

  • Hilker M, McNeil J (2008) Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. In: Wajnberg E, Bernstein C, van Alphen J (eds) Behavioral ecology of insect parasitoids. Blackwell Publishing, New York

    Google Scholar 

  • Li Y, Dickens JC, Steiner WWM (1992) Antennal olfactory responsiveness of Microplitis croceipes (Hymenoptera: Braconidae) to cotton plant volatiles. J Chem Ecol 18:1761–1773

    Article  CAS  Google Scholar 

  • Loeck AE (2002) Praga de produtos armazenados. EGUFPEL Editora, Pelotas 113 p

    Google Scholar 

  • Lorini I, Krzyzanowski FC, França-Neto JB, Henning AA, Henning FA (2015) Manejo integrado de pragas de grãos e sementes armazenadas. Embrapa, Brasília 81 p

    Google Scholar 

  • Mair MM, Ruther J (2019) Chemical ecology of the parasitoid wasp genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 7

  • Mbata GN, Eason J, Payton ME, Davis MF (2017) Putative host volatiles used by Habrobracon hebetor (Hymenoptera: Braconidae) to locate larvae of Plodia interpunctella (Lepidoptera: Pyralidae). J Insect Behav 30:287–299

    Article  Google Scholar 

  • Meiners T, Peri E (2013) Chemical ecology of insect parasitoids: essential elements for developing effective biological control programmes. In: Wajnberg E, Colazza C (eds) Chemical ecology of insect parasitoids. Wiley-Blackwell, Oxford

    Google Scholar 

  • Meirelles AP, Carneiro TR, Fernandes OA (2009) Efeito de diferentes fontes de carboidrato e da privação de alimento sobre aspectos biológicos de Telenomus remus Nixon (Hymenoptera, Scelionidae). Rev Bras Entomol 53:457–460

    Article  Google Scholar 

  • Menon A, Flinn PW, Dover BA (2002) Influence of temperature on the functional response of Anisopteromalus calandrae (Hymenoptera: Pteromalidae), a parasitoid of Rhyzopertha dominica (Coleoptera: Bostrichidae). J Stored Prod Res 38:463–469

    Article  Google Scholar 

  • Rojas JC, Castillo A, Virgen A (2006) Chemical cues used in host location by Phymastichus coffea, a parasitoid of coffee berry borer adults, Hypothenemus hampei. BioControl 37:141–147

    CAS  Google Scholar 

  • Scholler M, Prozell S (2002) Response of Trichogramma evanescens to the main sex pheromone component of Ephestia spp. and Plodia interpunctella, (Z,E)-9,12-tetra-decadenyl acetate (ZETA). J Stored Prod Res 38:177–184

    Article  CAS  Google Scholar 

  • Steidle JLM (2000) Host recognition cues of the granary weevil parasitoid Lariophagus distinguendus. Entomol Exp Appl 95:185–192

    Article  Google Scholar 

  • Steidle JLM, Scholler M (1997) Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J. Insect Behav 10:331–342

    Article  Google Scholar 

  • Tognon R, Sant’Ana J, Redaelli LR, Meyer AL (2018) Is it possible to manipulate scelionidae wasps’ preference to a target host? Neotrop Entomol 47:689–697

    Article  CAS  Google Scholar 

  • Vargas CC, Redaelli LR, Sant’Ana J, Morais RM, Padilha P (2017) Influência da idade do hospedeiro e da aprendizagem no comportamento quimiotáxico e no parasitismo de Trichogramma pretiosum. Iheringia Ser Zool 107:1–7

    Article  Google Scholar 

  • Vet L, Dicke M (1992) Ecology of infochemical use by natural enemies in trophic contexto. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vet L, Groenewold AW (1990) Semiochemicals and learning in parasitoids. J Chem Ecol 16:3119–3135

    Article  CAS  Google Scholar 

  • Vilela EF, Della Lucia TMC (2001) Feromônios de Insetos: biologia, química e emprego no manejo de pragas, 2nd edn. Ribeirão Preto, Holos Editora 206 p

    Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133

    Article  Google Scholar 

  • Vinson SB (1998) The general host selection behaviour of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. BioControl 11:79–96

    Google Scholar 

  • Wajnberg E, Colazza C (2013) Chemical ecology of insect parasitoids (eds), Wiley-Blackwell, Oxford 328 p

Download references

Acknowledgments

The authors would like to thank Paula Nicolay for the assistance in text review and Camila Corrêa Vargas for the assistance with the statistical analysis, and the National Council for Scientific and Technological Development (CNPq) for the master’s degree and DTI-C (306435/2015-2) scholarships granted to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Eduarda Bender, Simone Mundstock Jahnke, and Andreas Köhler planned this work; Eduarda Bender executed the experimental work; Eduarda Bender and Simone Mundstock Jahnke conducted the data analyses; and Eduarda Bender, Simone Mundstock Jahnke, and Andreas Köhler wrote the manuscript.

Corresponding author

Correspondence to E Bender.

Additional information

Edited by Andres Gonzáles – Univ de la República, Uruguay

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, E., Jahnke, S.M. & Köhler, A. Chemotaxic Responses of Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) to Odors of Larvae, Pupae, and the Diet of Lasioderma serricorne (Fabricius) (Coleoptera: Ptinidae). Neotrop Entomol 49, 171–178 (2020). https://doi.org/10.1007/s13744-019-00742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00742-0

Keywords

Navigation