Skip to main content
Log in

From the Laboratory to Full-Scale Applications of Forward Osmosis: Research Challenges and Opportunities

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Forward osmosis (FO) has recently emerged as a new separation platform for a range of applications that are currently not possible for other membrane processes. This review paper covers key aspects of FO development with a specific emphasis on current technical challenges for practical applications. Main hurdles in the transition of FO from a lab-scale process to large scale applications include low-performance membranes, development of suitable draw solute, inherent transport phenomena (e.g. concentration polarization and reverse solute flux), membrane fouling and subsequent membrane cleaning. Several new FO membranes have been developed with some improved performances but no membrane has yet been found convincing in all of the key performance indicators. Draw solutes have been broadly investigated but mainly at the lab-scale. There have only been very few pilot-scale studies, most of them using inorganic salts as draw solutes. Development of thermo-responsive draw solutes and TFC membranes have been reported to be most effective in reducing reverse solute flux while altering the hydrodynamic conditions and the use of ultrasonication along with exploring other viable options have been suggested to tackle external and internal concentration polarization respectively. Although membrane fouling types and mitigation strategies have been extensively explored, this review also highlights the need for further research in biofouling for long-term FO operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. science. 2011;333(6043):712–17.

    CAS  Google Scholar 

  2. Misdan N, Lau W, Ismail A. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane—current development, challenges and future prospects. Desalination. 2012;287:228–37.

    CAS  Google Scholar 

  3. Akther N, Sodiq A, Giwa A, Daer S, Arafat H, Hasan S. Recent advancements in forward osmosis desalination: a review. Chem Eng J. 2015;281:502–22.

    CAS  Google Scholar 

  4. Li Z, Linares RV, Sarp S, Amy G. Direct and Indirect Seawater Desalination by Forward Osmosis. Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation: Elsevier; 2018. p. 245–272.

  5. Achilli A, Cath TY, Childress AE. Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J Membr Sci. 2009;343(1–2):42–52.

    CAS  Google Scholar 

  6. Garcia-Castello EM, McCutcheon JR, Elimelech M. Performance evaluation of sucrose concentration using forward osmosis. J Membr Sci. 2009;338(1–2):61–6.

    CAS  Google Scholar 

  7. Achilli A, Cath TY, Marchand EA, Childress AE. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination. 2009;239(1–3):10–21.

    CAS  Google Scholar 

  8. Lin Y-K, Ho H-O. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice. J Control Release. 2003;89(1):57–69.

    CAS  Google Scholar 

  9. Hickenbottom KL, Hancock NT, Hutchings NR, Appleton EW, Beaudry EG, Xu P, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination. 2013;312:60–6.

    CAS  Google Scholar 

  10. Vu MT, Ansari AJ, Hai FI, Nghiem LD. Performance of a seawater-driven forward osmosis process for pre-concentrating digested sludge centrate: organic enrichment and membrane fouling. Environmental science: Water Research & Technology. 2018;4(7):1047-56. This study demonstrated the potential use of seawater as draw solution in forward osmosis for enrichment of organic carbon in the digested sludge centrate.

  11. Zhao S, Zou L, Tang CY, Mulcahy D. Recent developments in forward osmosis: opportunities and challenges. J Membr Sci. 2012;396:1–21.

    CAS  Google Scholar 

  12. Cath TY, Childress AE, Elimelech M. Forward osmosis: principles, applications, and recent developments. J Membr Sci. 2006;281(1–2):70–87.

    CAS  Google Scholar 

  13. Wang C-Y, Ho H-O, Lin L-H, Lin Y-K, Sheu M-T. Asymmetric membrane capsules for delivery of poorly water-soluble drugs by osmotic effects. Int J Pharm. 2005;297(1–2):89–97.

    CAS  Google Scholar 

  14. Gerstandt K, Peinemann K-V, Skilhagen SE, Thorsen T, Holt T. Membrane processes in energy supply for an osmotic power plant. Desalination. 2008;224(1–3):64–70.

    CAS  Google Scholar 

  15. Wang KY, Ong RC, Chung T-S. Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind Eng Chem Res. 2010;49(10):4824–31.

    CAS  Google Scholar 

  16. Zhang S, Wang KY, Chung T-S, Chen H, Jean Y, Amy G. Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J Membr Sci. 2010;360(1–2):522–35.

    CAS  Google Scholar 

  17. Sairam M, Sereewatthanawut E, Li K, Bismarck A, Livingston A. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—desalination using MgSO4 draw solution. Desalination. 2011;273(2–3):299–307.

    CAS  Google Scholar 

  18. Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci. 2011;367(1–2):340–52.

    CAS  Google Scholar 

  19. Widjojo N, Chung T-S, Weber M, Maletzko C, Warzelhan V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci. 2011;383(1–2):214–23.

    CAS  Google Scholar 

  20. Yu Y, Seo S, Kim I-C, Lee S. Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process. J Membr Sci. 2011;375(1–2):63–8.

    CAS  Google Scholar 

  21. Song X, Liu Z, Sun DD. Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv Mater. 2011;23(29):3256–60.

    CAS  Google Scholar 

  22. Qiu C, Setiawan L, Wang R, Tang CY, Fane AG. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination. 2012;287:266–70.

    CAS  Google Scholar 

  23. Ma N, Wei J, Qi S, Zhao Y, Gao Y, Tang CY. Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J Membr Sci. 2013;441:54–62.

    CAS  Google Scholar 

  24. Li X, Loh CH, Wang R, Widjajanti W, Torres J. Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. Journal of membrane science. 2017;525:257–68. In this paper, high water flux and low reverse solute flux were achieved by incorporating aquaporin into the polyamide active layer of a TFC FO membrane.

    CAS  Google Scholar 

  25. Yanar N, Son M, Yang E, Kim Y, Park H, Nam S-E, et al. Investigation of the performance behavior of a forward osmosis membrane system using various feed spacer materials fabricated by 3D printing technique. Chemosphere. 2018;202:708–15.

    CAS  Google Scholar 

  26. Wang Y-N, Wei J, She Q, Pacheco F, Tang CY. Microscopic characterization of FO/PRO membranes–a comparative study of CLSM, TEM and SEM. Environmental science & technology. 2012;46(18):9995–10003.

    CAS  Google Scholar 

  27. Ong RC, Chung T-S, Helmer BJ, de Wit JS. Novel cellulose esters for forward osmosis membranes. Ind Eng Chem Res. 2012;51(49):16135–45.

    CAS  Google Scholar 

  28. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M. High performance thin-film composite forward osmosis membrane. Environmental science & technology. 2010;44(10):3812–8.

    CAS  Google Scholar 

  29. Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG. Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci. 2010;355(1–2):158–67.

    CAS  Google Scholar 

  30. Qasim M, Darwish NA, Sarp S, Hilal N. Water desalination by forward (direct) osmosis phenomenon: a comprehensive review. Desalination. 2015;374:47–69.

    CAS  Google Scholar 

  31. Wang Y-N, Goh K, Li X, Setiawan L, Wang R. Membranes and processes for forward osmosis-based desalination: recent advances and future prospects. Desalination. 2018;434:81-99. This review comprehensively examined the latest progress in membrane fabrication for FO applications.

    CAS  Google Scholar 

  32. Zheng L, Price WE, Nghiem LD. Effects of fouling on separation performance by forward osmosis: the role of specific organic foulants. Environ Sci Pollut Res. 2018:1–12.

  33. Sahebi S, Phuntsho S, Woo YC, Park MJ, Tijing LD, Hong S, et al. Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane. Desalination. 2016;389:129–36.

    CAS  Google Scholar 

  34. Amini M, Jahanshahi M, Rahimpour A. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci. 2013;435:233–41.

    CAS  Google Scholar 

  35. Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem Eng J. 2014;237:70–80.

    CAS  Google Scholar 

  36. Setiawan L, Wang R, Li K, Fane AG. Fabrication of novel poly (amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci. 2011;369(1–2):196–205.

    CAS  Google Scholar 

  37. Balogun HA, Sulaiman R, Marzouk SS, Giwa A, Hasan SW. 3D printing and surface imprinting technologies for water treatment: A review. Journal of Water Process Engineering. 2019;31:100786. This is a comprehensive review about the the recent advances and challenges to 3D printing techniques for membranes and module spacers fabrication.

    Google Scholar 

  38. Fu F-J, Zhang S, Sun S-P, Wang K-Y, Chung T-S. POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation. J Membr Sci. 2013;443:144–55.

    CAS  Google Scholar 

  39. Liu X, Ng HY. Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane. J Membr Sci. 2015;481:148–63.

    CAS  Google Scholar 

  40. Achilli A, Cath TY, Childress AE. Selection of inorganic-based draw solutions for forward osmosis applications. J Membr Sci. 2010;364(1–2):233–41.

    CAS  Google Scholar 

  41. Ng HY, Tang W, Wong WS. Performance of forward (direct) osmosis process: membrane structure and transport phenomenon. Environmental science & technology. 2006;40(7):2408–13.

    CAS  Google Scholar 

  42. Su J, Chung T-S, Helmer BJ, de Wit JS. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. J Membr Sci. 2012;396:92–100.

    CAS  Google Scholar 

  43. Bowden KS, Achilli A, Childress AE. Organic ionic salt draw solutions for osmotic membrane bioreactors. Bioresour Technol. 2012;122:207–16.

    CAS  Google Scholar 

  44. Zou S, Gu Y, Xiao D, Tang CY. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J Membr Sci. 2011;366(1–2):356–62.

    CAS  Google Scholar 

  45. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. J Membr Sci. 2011;375(1–2):172–81.

    CAS  Google Scholar 

  46. Sato N, Sato Y, Yanase S. Forward osmosis using dimethyl ether as a draw solute. Desalination. 2014;349:102–5.

    CAS  Google Scholar 

  47. Inada A, Yumiya K, Takahashi T, Kumagai K, Hashizume Y, Matsuyama H. Development of thermoresponsive star oligomers with a glycerol backbone as the draw solute in forward osmosis process. J Membr Sci. 2019;574:147–53.

    CAS  Google Scholar 

  48. Li D, Zhang X, Simon GP, Wang H. Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res. 2013;47(1):209–15.

    CAS  Google Scholar 

  49. Ng HY, Tang W. Forward (direct) osmosis: a novel and prospective process for brine control. Proc Water Environ Fed. 2006;2006(8):4345–52.

    Google Scholar 

  50. Nguyen NC, Nguyen HT, Ho S-T, Chen S-S, Ngo HH, Guo W, et al. Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Sci Total Environ. 2016;557:44–50.

    Google Scholar 

  51. Neff RA. Solvent extractor. Google Patents; 1964.

    Google Scholar 

  52. McGinnis RL, McCutcheon JR, Elimelech M. A novel ammonia–carbon dioxide osmotic heat engine for power generation. J Membr Sci. 2007;305(1–2):13–9.

    CAS  Google Scholar 

  53. Chen Q, Xu W, Ge Q. Synthetic draw solutes for forward osmosis: status and future. Reviews in chemical engineering. 2017. This review highlighted the potential and key challenges of thermo-responsive draw solutes application in forward osmosis.

  54. Zhao D, Wang P, Zhao Q, Chen N, Lu X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination. 2014;348:26–32.

    CAS  Google Scholar 

  55. J-j K. Kang H, Choi Y-S, Yu YA, Lee J-C. thermo-responsive oligomeric poly (tetrabutylphosphonium styrenesulfonate) s as draw solutes for forward osmosis (FO) applications. Desalination. 2016;381:84–94.

    Google Scholar 

  56. McGinnis RL, Hancock NT, Nowosielski-Slepowron MS, McGurgan GD. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination. 2013;312:67–74.

    CAS  Google Scholar 

  57. Phuntsho S, Kim JE, Johir MA, Hong S, Li Z, Ghaffour N, et al. Fertiliser drawn forward osmosis process: pilot-scale desalination of mine impaired water for fertigation. J Membr Sci. 2016;508:22–31.

    CAS  Google Scholar 

  58. Corzo B, de la Torre T, Sans C, Ferrero E, Malfeito JJ. Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale. Chem Eng J. 2017;326:1–8.

    CAS  Google Scholar 

  59. Kim Y, Lee JH, Kim YC, Lee KH, Park IS, Park S-J. Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate. Chem Eng Res Des. 2015;94:390–5.

    CAS  Google Scholar 

  60. Wang Z, Zheng J, Tang J, Wang X, Wu Z. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications. Sci Rep. 2016;6:21653.

    CAS  Google Scholar 

  61. Hancock NT, Xu P, Heil DM, Bellona C, Cath TY. Comprehensive bench-and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental science & technology. 2011;45(19):8483–90.

    CAS  Google Scholar 

  62. Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J Membr Sci. 2011;379(1–2):459–67.

    CAS  Google Scholar 

  63. Hancock NT, Cath TY. Solute coupled diffusion in osmotically driven membrane processes. Environmental science & technology. 2009;43(17):6769–75.

    CAS  Google Scholar 

  64. Suh C, Lee S. Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution. J Membr Sci. 2013;427:365–74.

    CAS  Google Scholar 

  65. Coday BD, Xu P, Beaudry EG, Herron J, Lampi K, Hancock NT, et al. The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination. 2014;333(1):23–35.

    CAS  Google Scholar 

  66. Lutchmiah K, Verliefde A, Roest K, Rietveld LC, Cornelissen ER. Forward osmosis for application in wastewater treatment: a review. Water Res. 2014;58:179–97.

    CAS  Google Scholar 

  67. Ansari AJ, Hai FI, Price WE, Drewes JE, Nghiem LD. Forward osmosis as a platform for resource recovery from municipal wastewater-a critical assessment of the literature. J Membr Sci. 2017;529:195–206.

    CAS  Google Scholar 

  68. Zou S, Qin M, He Z. Tackle reverse solute flux in forward osmosis towards sustainable water recovery: reduction and perspectives. Water research. 2018. This review discussed the various control strategies including the selection of suitable draw solutes and development of advanced membranes and modifications to reduce reverse solute flux.

  69. Huang L, Bui N-N, Meyering MT, Hamlin TJ, McCutcheon JR. Novel hydrophilic nylon 6, 6 microfiltration membrane supported thin film composite membranes for engineered osmosis. J Membr Sci. 2013;437:141–9.

    CAS  Google Scholar 

  70. Zou S, Smith ED, Lin S, Martin SM, He Z. Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ Int. 2019;131:104970.

    CAS  Google Scholar 

  71. Gray GT, McCutcheon JR, Elimelech M. Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination. 2006;197(1–3):1–8.

    CAS  Google Scholar 

  72. Choi Y, Hwang T-M, Jeong S, Lee S. The use of ultrasound to reduce internal concentration polarization in forward osmosis. Ultrasonics sonochemistry. 2018;41:475-83. This study demonstrated the potential of ultrasonication to reduce internal concentration polarization.

    CAS  Google Scholar 

  73. Shaffer DL, Werber JR, Jaramillo H, Lin S, Elimelech M. Forward osmosis: where are we now? Desalination. 2015;356:271–84.

    CAS  Google Scholar 

  74. Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresour Technol. 2012;122:27–34.

    CAS  Google Scholar 

  75. Khan MMT, Stewart PS, Moll DJ, Mickols WE, Burr MD, Nelson SE, et al. Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system. J Membr Sci. 2010;349(1–2):429–37.

    CAS  Google Scholar 

  76. Alzahrani S, Mohammad AW. Challenges and trends in membrane technology implementation for produced water treatment: a review. Journal of Water Process Engineering. 2014;4:107–33.

    Google Scholar 

  77. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.

    CAS  Google Scholar 

  78. Chen D. Ultrasonic control of ceramic membrane fouling caused by silica particles and dissolved organic matter: the Ohio State University; 2005.

    Google Scholar 

  79. Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci. 2010;365(1–2):34–9.

    CAS  Google Scholar 

  80. Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environmental science & technology. 2010;44(6):2022–8.

    CAS  Google Scholar 

  81. Linares RV, Yangali-Quintanilla V, Li Z, Amy G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 2011;45(20):6737–44.

    CAS  Google Scholar 

  82. Chun Y, Zaviska F, Cornelissen E, Zou L. A case study of fouling development and flux reversibility of treating actual lake water by forward osmosis process. Desalination. 2015;357:55–64.

    CAS  Google Scholar 

  83. Chun Y, Mulcahy D, Zou L, Kim IS. A short review of membrane fouling in forward osmosis processes. Membranes. 2017;7(2):30. This article reviewed different types of membrane fouling and corresponding fouling mitigation strategies.

  84. Nguyen NC, Nguyen HT, Chen S-S, Nguyen NT, Li C-W. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge. Water Sci Technol. 2015;72(8):1301–7.

    CAS  Google Scholar 

  85. Kim C, Lee S, Hong S. Application of osmotic backwashing in forward osmosis: mechanisms and factors involved. Desalin Water Treat. 2012;43(1–3):314–22.

    CAS  Google Scholar 

  86. Blandin G, Verliefde AR, Comas J, Rodriguez-Roda I, Le-Clech P. Efficiently combining water reuse and desalination through forward osmosis—reverse osmosis (FO-RO) hybrids: a critical review. Membranes. 2016;6(3):37.

    Google Scholar 

  87. Li J, Sanderson R, Jacobs E. Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. J Membr Sci. 2002;205(1–2):247–57.

    CAS  Google Scholar 

  88. Zhang Q, Jie YW, Loong WLC, Zhang J, Fane AG, Kjelleberg S, et al. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Res. 2014;58:141–51.

    CAS  Google Scholar 

  89. Chun Y, Kim S-J, Millar GJ, Mulcahy D, Kim IS, Zou L. Forward osmosis as a pre-treatment for treating coal seam gas associated water: flux and fouling behaviour. Desalination. 2017;403:144–52.

    CAS  Google Scholar 

  90. Oviedo C, Rodríguez J. EDTA: the chelating agent under environmental scrutiny. Quim Nova. 2003;26(6):901–5.

    CAS  Google Scholar 

  91. Li Q, Elimelech M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environmental science & technology. 2004;38(17):4683–93.

    CAS  Google Scholar 

  92. Majeed T, Phuntsho S, Chekli L, Lee S-H, Kim K, Shon HK. Role of various physical and chemical techniques for hollow fibre forward osmosis membrane cleaning. Desalin Water Treat. 2016;57(17):7742–52.

    CAS  Google Scholar 

  93. Yoon H, Baek Y, Yu J, Yoon J. Biofouling occurrence process and its control in the forward osmosis. Desalination. 2013;325:30–6.

    CAS  Google Scholar 

  94. Wang X, Hu T, Wang Z, Li X, Ren Y. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Res. 2017;123:505–12.

    CAS  Google Scholar 

  95. Guillen-Burrieza E, Ruiz-Aguirre A, Zaragoza G, Arafat HA. Membrane fouling and cleaning in long term plant-scale membrane distillation operations. J Membr Sci. 2014;468:360–72.

    CAS  Google Scholar 

  96. Saleh TA, Gupta VK. Nanomaterial and polymer membranes: synthesis, characterization, and applications: Elsevier; 2016.

    Google Scholar 

  97. Madaeni SS, Sharifnia S, Moradi G. Chemical cleaning of microfiltration membranes fouled by whey. J Chin Chem Soc. 2001;48(2):179–91.

    CAS  Google Scholar 

  98. Lee J, Johir M, Chinu K, Shon H, Vigneswaran S, Kandasamy J, et al. Hybrid filtration method for pre-treatment of seawater reverse osmosis (SWRO). Desalination. 2009;247(1–3):15–24.

    CAS  Google Scholar 

  99. Liu Y. Fouling in forward osmosis membrane processes: Chracterization, mechanisms, and mitigation [dissertation]: University of Maryland; 2013.

    Google Scholar 

  100. Park C, Lee YH, Lee S, Hong S. Effect of cake layer structure on colloidal fouling in reverse osmosis membranes. Desalination. 2008;220(1–3):335–44.

    CAS  Google Scholar 

  101. Nguyen T, Roddick FA, Fan L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes. 2012;2(4):804–40.

    CAS  Google Scholar 

  102. Gogate PR. Application of cavitational reactors for water disinfection: current status and path forward. J Environ Manag. 2007;85(4):801–15.

    CAS  Google Scholar 

  103. Nguyen TPN, Jun B-M, Kwon Y-N. The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane. J Membr Sci. 2017;523:111–21.

    CAS  Google Scholar 

  104. Polanska M, Huysman K, Van Keer C. Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water Res. 2005;39(11):2259–66.

    CAS  Google Scholar 

  105. Hammes F, Meylan S, Salhi E, Köster O, Egli T, Von Gunten U. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Res. 2007;41(7):1447–54.

    CAS  Google Scholar 

  106. Lehtola MJ, Miettinen IT, Vartiainen T, Rantakokko P, Hirvonen A, Martikainen PJ. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Water Res. 2003;37(5):1064–70.

    CAS  Google Scholar 

  107. Ali S, Rimassa SM. Auzerais FM. Li L. Method for treating fracturing water. Google Patents: Boney CL; 2013.

    Google Scholar 

  108. Ye Y, Ngo HH, Guo W, Liu Y, Li J, Liu Y, et al. Insight into chemical phosphate recovery from municipal wastewater. Sci Total Environ. 2017;576:159–71.

    CAS  Google Scholar 

  109. Schmidt JJ, Gagnon GA, Jamieson RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecol Eng. 2016;95:588–93.

    Google Scholar 

  110. Jacobs JF, Hasan MN, Paik KH, Hagen WR, van Loosdrecht MC. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnol Bioeng. 2010;105(5):918–23.

    CAS  Google Scholar 

  111. Peng L, Dai H, Wu Y, Peng Y, Lu X. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere. 2018;197:768–81.

    CAS  Google Scholar 

  112. Karaca S, Gürses A, Ejder M, Açıkyıldız M. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater. 2006;128(2–3):273–9.

    CAS  Google Scholar 

  113. Vasudevan S, Sozhan G, Ravichandran S, Jayaraj J, Lakshmi J, Sheela M. Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind Eng Chem Res. 2008;47(6):2018–23.

    CAS  Google Scholar 

  114. González JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev. 2006;70(4):859–75.

    Google Scholar 

  115. Kim S, Lee S, Hong S, Oh Y, Kweon J, Kim T. Biofouling of reverse osmosis membranes: microbial quorum sensing and fouling propensity. Desalination. 2009;247(1–3):303–15.

    CAS  Google Scholar 

  116. Ponnusamy K, Paul D, Kim YS, Kweon JH. 2 (5H)-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Braz J Microbiol. 2010;41(1):227–34.

    CAS  Google Scholar 

  117. Kappachery S, Paul D, Yoon J, Kweon JH. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane. Biofouling. 2010;26(6):667–72.

    CAS  Google Scholar 

  118. Yeon K-M, Cheong W-S, Oh H-S, Lee W-N, Hwang B-K, Lee C-H, et al. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environmental science & technology. 2008;43(2):380–5.

    Google Scholar 

  119. Mc Grath S, van Sinderen D. Bacteriophage: genetics and molecular biology: horizon scientific press; 2007.

    Google Scholar 

  120. Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S. Nitric oxide-mediated dispersal in single-and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol. 2009;2(3):370–8.

    CAS  Google Scholar 

  121. He L, Dumée LF, Feng C, Velleman L, Reis R, She F, et al. Promoted water transport across graphene oxide–poly (amide) thin film composite membranes and their antibacterial activity. Desalination. 2015;365:126–35.

    CAS  Google Scholar 

  122. Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J Appl Polym Sci. 2009;114(1):630–42.

    Google Scholar 

  123. Bae T-H, Tak T-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci. 2005;249(1–2):1–8.

    CAS  Google Scholar 

  124. Liu P-S, Chen Q, Wu S-S, Shen J, Lin S-C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci. 2010;350(1–2):387–94.

    CAS  Google Scholar 

  125. Church M. Forward Water demonstration plant begins operations 2019, August 23 [Available from: https://www.canadianbiomassmagazine.ca/forward-water-demonstration-plant-begins-operations/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long D. Nghiem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J.A., Shon, H. & Nghiem, L.D. From the Laboratory to Full-Scale Applications of Forward Osmosis: Research Challenges and Opportunities. Curr Pollution Rep 5, 337–352 (2019). https://doi.org/10.1007/s40726-019-00132-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00132-5

Keywords

Navigation