Skip to main content
  • Original Article
  • Published:

Current uptake of 15N-labeled ammonium and nitrate in flooded and non-flooded black spruce and tamarack seedlings

Absorption courante de 15N ammonium et nitrate chez des plants de Picea mariana (Mill.) BSP.) et de mélèze Tamarack (Larix laricina (Du Roi) K. Koch) ennoyés et non ennoyés

Abstract

  • • We investigated the effects of flooding for three weeks on physiological responses and uptake of NH +4 and NO 3 by black spruce (Picea mariana (Mill.) BSP.) and tamarack (Larix laricina (Du Roi) K. Koch) seedlings fertilized with labeled (15NH4)2SO4 or K15NO3 in a growth chamber experiment.

  • • Flooding reduced photosynthesis (A), transpiration (E), water use efficiency (WUE), and current uptake of NH +4 and NO 3 in both species.

  • • Under flooding, there were no significant differences between the two species in uptake of either NH +4 or NO 3 at the whole-plant level but black spruce had higher translocation of NH +4 to the shoots than did tamarack.

  • • Under non-flooded conditions, black spruce seedlings exhibited higher uptake of both NH +4 and NO 3 than did tamarack and demonstrated preferential uptake of NH +4 (19. 7 mg g−1dw) over NO 3 (12.3 mg g−1dw after three weeks). In contrast, non-flooded tamarack seedlings had equal uptake of NH +4 (4.96 mg g−1dw) and NO 3 (4.97 mg g−1dw).

  • • We hypothesize that the ability of tamarack to equally exploit both 15NH +4 and 15NO 3 would confer an advantage over black spruce, when faced with limitations in the availability of different forms of soil nitrogen.

Résumé

  • • Nous avons étudié les effets d’un ennoyage pendant trois semaines sur les réponses physiologiques et l’absorption de NH +4 et de NO 3 par des plants d’épinette noire (Picea mariana (Mill.) BSP.) et de mélèze Tamarack (Larix laricina (Du Roi) K. Koch) fertilisés et marqués (15NH4)2SO4 ou K15NO3 et installés dans une chambre d’expérimentation.

  • • L’ennoyage réduit la photosynthèse (A), la transpiration (E), l’efficience d’utilisation de l’eau (WUE), et l’absorption de NH +4 et de NO 3 des deux espèces.

  • • Sous ennoyage, il n’y avait pas de différence significative entre les deux espèces dans l’absorption de NH +4 ou de NO 3 au niveau de l’ensemble du plant, mais l’épinette noire a présenté des translocations plus élevées de NH +4 vers les pousses que le mélèze Tamarack.

  • • En l’absence d’ennoyage, les semis d’épinette noire ont présenté une absorption plus élevée de NH +4 et de NO 3 que le mélèze Tamarack et ont montré une absorption préférentielle de NH +4 (19,7 mg g−1de poids sec) par rapport à NO 3 (12,3 mg g−1 de poids sec) après trois semaines. En revanche, les jeunes plants de mélèze sans ennoyage ont présenté la même absorption de NH +4 (4,96 mg g−1de poids sec) et de NO 3 (4,97 mg g−1 de poids sec).

  • • Nous faisons l’hypothèse que la capacité du mélèze à absorber également les deux 15NH +4 et 15NO 3 lui conférerait un avantage par rapport à l’épinette noire, lorsqu’ils sont confrontés à des limitations de la disponibilité des différentes formes d’azote dans le sol.

References

  • Amponsah I.G., Lieffers V.J., Comeau P.G., and Landhäusser S.M., 2004. Nitrogen-15 uptake by Pinus contorta seedlings in relation to phenological stage and season. Scand. J. For. Res. 19: 329–338.

    Article  Google Scholar 

  • Armstrong W., Brandle R., and Jackson M.B., 1994. Mechanisms of flood tolerance in plants. Acta. Bot. Neerl. 43: 307–358.

    CAS  Google Scholar 

  • Armstrong J., Armstrong W., Beckett P.M., Halder J.E., Lythe S., Holt R., and Sinclair A., 1996a. Pathways of aeration and the mechanisms and beneficial effects of humidity and venturi-induced convections in Phragmites australis. Aquat. Bot. 54: 177–197.

    Article  Google Scholar 

  • Armstrong J., Armstrong W., and Van Der Putten W.H., 1996b. Phragmites die-back: bud and root death, blockage within the aeration and vascular systems and the possible role of phytotoxins. New Phytol. 133: 399–414.

    Article  CAS  Google Scholar 

  • Armstrong W., Armstrong J., and Beckett P.M., 1996c. Pressurized aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot. Phytotax. 31: 25–36.

    Article  Google Scholar 

  • Astridge K., 1996. The relationship between microhabitat variation and performance of Picea mariana and Larix laricina seedlings in a rich fen. M.Sc. thesis, University of Alberta, Edmonton, Canada, 69 p.

    Google Scholar 

  • Bassirirad H., Griffin K.L., Reynolds J.F., and Strain B.R., 1997. Changes in root NH +4 and NO 3 absorption rates of loblolly and ponderosa pine in response to CO2 enrichment. Plant Soil 190: 1–9.

    Article  CAS  Google Scholar 

  • Binkley D., Sollins P., and McGill W.B., 1985. Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci. Soc. Am. J. 49: 444–447.

    Article  CAS  Google Scholar 

  • Bonan G.B. and Shugart H.H., 1989. Environmental factors and ecosystem processes in boreal forests. Annu. Rev. Ecol. Syst. 20: 1–28.

    Article  Google Scholar 

  • Buchmann N., Schulze E.-D., Gebauer G., 1995. 15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation. Oecologia 102: 361–370.

    Article  Google Scholar 

  • Caemmerer S.V. and Farquhar G.D., 1981. Some relationship between biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.

    Article  Google Scholar 

  • Campbell T.A., 1980. Oxygen flux measurements in organic soils. Can. J. Soil Sci. 60: 641–650.

    Article  CAS  Google Scholar 

  • Chapin F.S. III., Bloom A.J., Field C.B., and Waring R.H., 1987. Plant responses to multiple environmental stresses. BioScience 37: 49–56.

    Article  Google Scholar 

  • Conlin T.S.S. and Lieffers V.J., 1993. Anaerobic and aerobic efflux rates from boreal forest conifer roots at low temperature. Can. J. For. Res. 23: 767–771.

    Article  CAS  Google Scholar 

  • Dang Q.L., Lieffers V.J., Rothwell R.L., and Macdonald S.E., 1991. Diurnal variations and interrelations of ecophysiological parameters in peatland black spruce, tamarack, and swamp birch under different weather and soil moisture conditions. Oecologia 88: 317–324.

    Article  Google Scholar 

  • DeLucia E.H. and Schlesinger W.H., 1995. Photosynthetic rates and nutrient-use efficiency among evergreen and deciduous shrubs in Okefenokee swamp. Int. J. Plant Sci. 156: 19–28.

    Article  Google Scholar 

  • DeLaune R.D., Pezeshki S.R., and Lindau C.W., 1998. Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings. J. Plant Nutr. 21: 757–768.

    Article  CAS  Google Scholar 

  • DeLaune R.D., Jugsujinda A., and Reddy K.R., 1999. Effect of root oxygen stress on phosphorus uptake by cattail. J. Plant Nutr. 22: 459–466.

    Article  CAS  Google Scholar 

  • Hangs R.D., Knight J.D., and Van Rees K.C.J., 2003. Nitrogen uptake characteristics for roots of conifer seedlings and common boreal forest competitor species. Can. J. For. Res. 33: 156–163.

    Article  Google Scholar 

  • Hauck R. D., Meisinger J. J., and Mulvancy R. L., 1994. Practical consideration in the use of nitrogen tracers in agricultural and environmental research. In: Weaver et al., (Eds.), Methods of soil analysis. Part 2. SSSA Book Ser. 5. Madison, WI, USA, pp. 907–950.

  • Islam M.A. and Macdonald S.E., 2004. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18: 35–42.

    Google Scholar 

  • Islam M.A., Macdonald S.E., and Zwiazek J.J., 2003. Responses of black spruce (Picea mariana) and tamarack (Larix laricina) to flooding and ethylene. Tree Physiol. 23: 545–552.

    PubMed  Google Scholar 

  • Knowles R. and Lefebvre J., 1972. Field, greenhouse and laboratory studies on the transformation of 15N-labeled urea in a boreal forest black spruce system. In: Isotopes and radiation in soil-plant relationship influencing forestry. IAEA, Vienna, pp. 349–358.

    Google Scholar 

  • Kozlowski T.T., 1984. Plant responses to flooding of soil. BioScience 34: 162–169.

    Article  Google Scholar 

  • Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1995a. Compartmentation and flux characteristics of nitrate in spruce. Planta 196: 674–682.

    Article  Google Scholar 

  • Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1995b. Kinetics of NO 3 influx in spruce. Plant Physiol. 109: 319–326.

    Google Scholar 

  • Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1996. Kinetics of NH +4 influx in spruce. Plant Physiol. 110: 773–779.

    Google Scholar 

  • Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385: 59–61.

    Article  Google Scholar 

  • Lieffers V.J. and Macdonald S.E., 1990. Growth and foliar nutrient status of black spruce and tamarack in relation to depth of water table in some Alberta peatlands. Can. J. For. Res. 20: 805–809.

    Article  CAS  Google Scholar 

  • Macdonald S.E. and Lieffers V.J., 1990. Photosynthesis, water relations, and foliar nitrogen Picea mariana and Larix laricina from drained and undrained peatlands. Can. J. For. Res. 20: 995–1000.

    Article  CAS  Google Scholar 

  • Macdonald S.E. and Yin F.Y., 1999. Factors influencing size inequality in peatland black spruce and tamarack: Evidence from post-drainage release growth. J. Ecol. 87: 404–412.

    Article  Google Scholar 

  • Malagoli M., Canal A.D., Quaggiotti S., Pegoraro P., and Bottacin A., 2000. Differences in nitrate and ammonium uptake between Scots pine and European larch. Plant Soil 221: 1–3.

    Article  CAS  Google Scholar 

  • Mannerkoski H., 1985. Effect of water table fluctuation on the ecology of peat soil. Publication from the Department of Peatland Forestry, University of Helsinki 7, Helsinki, p. 190.

    Google Scholar 

  • Marschner H., Häussling M., and Eckhard G. 1991. Ammonium and nitrate uptake rate and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5: 14–21.

    Article  Google Scholar 

  • Mead D.J. and Preston C.M., 1994. Distribution and retranslocation of 15N in lodgepole pine over eight growing seasons. Tree Physiol. 14: 389–402.

    PubMed  CAS  Google Scholar 

  • Miller B.D. and Hawkins B.J., 2003. Nitrogen uptake and utilization by slow and fast-growing families of interior spruce under contrasting fertility regimes Can. J. For. Res. 33: 959–966.

    Google Scholar 

  • Mugasha A.G., Pluth D.J., and Hillman G.R. 1993. Foliar responses of tamarack and black spruce to drainage and fertilization of a minerotrophic peatland. Can. J. For. Res. 23: 166–180.

    Article  CAS  Google Scholar 

  • Mugasha A.G. and Pluth D.J., 1994. Distribution and recovery of 15N-urea in a tamarack/black spruce mixed stand on a drained minerotrophic peatland. For. Ecol. Manage 68: 353–363.

    Article  Google Scholar 

  • Nômmik H., 1990. Appilication of 15N as a tracer in studying fertilizer nitrogen transformations and recovery in coniferous ecosystems. In: Nutrient cycling in terrestrial ecosystems: Field methods, application and interpretation. Harrison A.F., Ineson P., and Heal O.W. (Eds.), Elsevier Applied. Science, NY, USA. pp. 277–291.

    Google Scholar 

  • Nômmik H. and Larson K., 1989. Assessment of fertilizer nitrogen accumulation in Pinus sylvestris trees and retention in soil by 15N recovery techniques. Scan. J. For. Res. 4: 427–442.

    Article  Google Scholar 

  • Oaks A. and Hirel B., 1985. Nitrogen metabolism in roots. Ann. Rev. Plant Physiol. 36: 345–365.

    Article  CAS  Google Scholar 

  • Pate J.S., 1983. Patterns of nitrogen metabolism in higher plants and their ecological significance. In: Nitrogen as an Ecological Factor. Lee J.A., McNeill S., and Rorison I.H. (Eds.), The 22nd Symposium of the British Ecological Society. Oxford, UK, 1981, pp. 225–255.

  • Ponnamperuma F.N., 1972. The chemistry of submerged soil. Adv. Agron. 24: 29–96.

    Article  CAS  Google Scholar 

  • Preston C.M. and Mead D.J., 1994. Growth response and recovery of 15N-fertilizer one and eight growing season after application to lodgepole pine in British Columbia. For. Ecol. Manage. 65: 219–229.

    Article  Google Scholar 

  • Raven P.H., Evert R.F., and Eichhorn S.E., 1992. Biology of Plants. 5th ed. Edition, Worth Publishers, NY, 610 p.

    Google Scholar 

  • Salifu K.F., Apostol K.G., Jacobs D.F., and Islam M.A., 2008. Growth, physiology, and nutrient retranslocation in nitrogen-15 fertilized Quercus rubra seedlings. Ann. For. Sci. 65: 101.

    Article  Google Scholar 

  • Salifu K.F. and Timmer V.R., 2003. Nitrogen retranslocation response of young Picea mariana to Nitrogen-15 supply. Soil Sci. Am. J. 67: 309–317.

    Article  CAS  Google Scholar 

  • Tyrrell L.E. and Boerner R.E., 1987. Larix laricina and Picea mariana: relationships among leaf life-span, foliar nutrient patterns, nutrient conversions, and growth efficiency. Can. J. Bot. 65: 1570–1577.

    Article  Google Scholar 

  • Van Cleve K. and Alexander V., 1981. Nitrogen cycling in tundra and boreal ecosystems. Ecol. Bull. 33: 375–404.

    Google Scholar 

  • Wanyancha J.M. and Morgenstern E.K., 1985. Genetic variation in nitrogen concentration, accumulation and utilization efficiency in 20 Larix laricina families. In: 29th Northeastern Forest Tree Improvement Conference. Morgantown, WV, USA, http://www.rngr.net/Publications/neftic/ 29th-northeastern-forest-tree-improvement-conference-1985/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ellen Macdonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.A., Macdonald, S.E. Current uptake of 15N-labeled ammonium and nitrate in flooded and non-flooded black spruce and tamarack seedlings. Ann. For. Sci. 66, 102 (2009). https://doi.org/10.1051/forest:2008077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008077

Keywords

Mots-clés