Skip to main content

Advertisement

Log in

Potential of \(\hbox {CO}_{2}\) based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Carbon capture and sequestration (CCS) is necessary to mitigate global warming caused by anthropogenic \(\hbox {CO}_{2}\) emissions in the atmosphere. However, due to very high storage cost, it is difficult to sustain the CCS industry. The hot sedimentary and dry rock reservoirs with very high temperature can support both geothermal energy production, and carbon geosequestration economically, provided the \(\hbox {CO}_{2}\) is used as a heat-carrying fluid with proper optimization of injection parameters according to reservoir conditions. In this paper we have reviewed past studies discussing the working mechanisms, pressure management strategies and various advantages of energy extraction from hydrothermal reservoirs by \(\hbox {CO}_2\) plume geothermal technology and hot dry rock— enhanced geothermal system (EGS) technology. Past studies highlighted that due to very high thermal expansivity and mobility, supercritical \(\hbox {CO}_2\) can produce more heat than water-EGS. For low enthalpy (around 50 \(^\circ\)C) and shallow (0.5–1.5 km) reservoirs, \(\hbox {CO}_2\) can fetch more heat than water because of higher heat capacity. Other advantages of CCS and EGS are (i) the production of brine or \(\hbox {CO}_2\) assisting to manage the reservoir pressure and restrict the fluid interference with neighboring reservoirs, (ii) the fluid loss, which is a significant concern in a water-EGS but for \(\hbox {CO}_{2}\)-EGS it is environmentally friendly, and (iii) higher pressure and cold fluid injection induced geological deformation and microseismicity are relatively less for \(\hbox {CO}_2\)-EGS than water-EGS. In this paper, we have also discussed various challenges of \(\hbox {CO}_2\)-EGS to enable CCS in hydrothermal reservoir and hot dry rock system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams BM, Kuehn TH, Bielicki JM, Randolph JB, Saar MO (2014) On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems. Energy 69:409–418

    Article  Google Scholar 

  • Adams BM, Kuehn TH, Bielicki JM, Randolph JB, Saar MO (2015) A comparison of electric power output of \(\text{ CO}_2\) Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Appl Energy 140:365–377

    Article  Google Scholar 

  • Allis R, Blackett B, Gwynn M, Hardwick C, Moore J, Morgan C, Schelling D, Sprinkel D (2012) Stratigraphic reservoirs in the great basin—the bridge to development of enhanced geothermal systems in the US. GRC Trans 36:351–357

    Google Scholar 

  • Al-Zaidi E, Fan X (2019) Liquid \(\text{ CO}_2\) behaviour during water displacement in a sandstone core sample. J Nat Gas Sci Eng 62:259–274

    Article  Google Scholar 

  • André L, Azaroual M, Menjoz A (2010) Numerical simulations of the thermal impact of supercritical \(\text{ CO}_2\) injection on chemical reactivity in a carbonate saline reservoir. Transp Porous Media 82(1):247–274

    Article  Google Scholar 

  • Atrens AD, Gurgenci H, Rudolph V (2009) CO\(_2\) thermosiphon for competitive geothermal power generation. Energy Fuels 23(1):553–557

    Article  Google Scholar 

  • Atrens AD, Gurgenci H, Rudolph V (2010) Electricity generation using a carbon-dioxide thermosiphon. Geothermics 39(2):161–169

    Article  Google Scholar 

  • Babaei M (2019) Integrated carbon sequestration–geothermal heat recovery: performance comparison between open and close systems. Transp Porous Media 126(1):249–273

    Article  MathSciNet  Google Scholar 

  • Bai B, He Y, Li X (2018) Numerical study on the heat transfer characteristics between supercritical carbon dioxide and granite fracture wall. Geothermics 75:40–47

    Article  Google Scholar 

  • Bergmo PES, Grimstad AA, Lindeberg E (2011) Simultaneous \(\text{ CO}_2\) injection and water production to optimise aquifer storage capacity. Int J Greenh Gas Control 5(3):555–564

    Article  Google Scholar 

  • Biagi J, Agarwal R, Zhang Z (2015) Simulation and optimization of enhanced geothermal systems using \(\text{ CO}_2\) as a working fluid. Energy 86:627–637

    Article  Google Scholar 

  • Bielicki JM, Pollak MF, Fitts JP, Peters CA, Wilson EJ (2014) Causes and financial consequences of geologic \(\text{ CO}_2\) storage reservoir leakage and interference with other subsurface resources. Int J Greenh Gas Control 20:272–284

    Article  Google Scholar 

  • Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of \(\text{ CO}_2\) storage: capacity and regulatory implications. Int J Greenh Gas Control 3(6):745–756

    Article  Google Scholar 

  • Birkholzer JT, Cihan A, Zhou Q (2012) Impact-driven pressure management via targeted brine extraction—Conceptual studies of \(\text{ CO}_2\) storage in saline formations. Int J Greenh Gas Control 7:168–180

    Article  Google Scholar 

  • Birkholzer JT, Oldenburg CM, Zhou Q (2015) \(\text{ CO}_2\) migration and pressure evolution in deep saline aquifers. Int J Greenh Gas Control 40:203–220

    Article  Google Scholar 

  • Björbsson G, Bodvarsson G (1990) A survey of geothermal reservoir properties. Geothermics 19(1):17–27

    Article  Google Scholar 

  • Black JR, Carroll SA, Haese RR (2015) Rates of mineral dissolution under \(\text{ CO}_2\) storage conditions. Chem Geol 399:134–144

    Article  Google Scholar 

  • Bongole K, Sun Z, Yao J, Mehmood A, Yueying W, Mboje J, Xin Y (2019) Multifracture response to supercritical CO\(_{2}\)-EGS and water-EGS based on thermo-hydro-mechanical coupling method. Int J Energy Res 399:1–24

    Google Scholar 

  • Borgia A, Pruess K, Kneafsey TJ, Oldenburg CM (2013) Simulation of \(\text{ CO}_2\)-EGS in a fractured reservoir with salt precipitation. Energy Procedia 37(1):6617–6624

    Article  Google Scholar 

  • Borgia A, Oldenburg CM, Zhang R, Pan L, Daley TM, Finsterle S, Ramakrishnan TS (2017) Simulations of \(\text{ CO}_2\) injection into fractures and faults for improving their geophysical characterization at EGS sites. Geothermics 69:189–201

    Article  Google Scholar 

  • Brosse É, Bachaud P, Richard L, Michel A, Guichet X, Rossi T, Blanke R, Gaucher ÉC, Parra T (2017) Quantification of carbon dioxide sourced by mineral reactions in ultradeep sedimentary basins. Mar Pet Geol 81:112–133

    Article  Google Scholar 

  • Brown D (2000) A hot dry rock geothermal energy concept utilizing supercritical CO\(_2\) instead of water. In 25th workshop on geothermal reservoir engineering. Stanford University, Stanford. SGP-TR-165

  • Budinis S, Krevor S, Dowell NM, Brandon N, Hawkes A (2018) An assessment of CCS costs, barriers and potential. Energy Strategy Rev 22(August):61–81

    Article  Google Scholar 

  • Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac Dowell N (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176

    Article  Google Scholar 

  • Buscheck TA (2015) Earth battery. Mech Eng 137(12):36

    Article  Google Scholar 

  • Buscheck TA, Sun Y, Hao Y, Wolery TJ, Bourcier W, Tompson AF, Jones ED, Friedmann SJ, Aines RD (2011) Combining brine extraction, desalination, and residual-brine reinjection with \(\text{ CO}_2\) storage in saline formations: implications for pressure management, capacity, and risk mitigation. Energy Procedia 4:4283–4290

    Article  Google Scholar 

  • Buscheck TA, Sun Y, Chen M, Hao Y, Wolery TJ, Bourcier WL, Court B, Celia MA, Friedmann SJ, Aines RD (2012) Active \(\text{ CO}_2\) reservoir management for carbon storage : analysis of operational strategies to relieve pressure buildup and improve injectivity. Int J Greenh Gas Control 6:230–245

    Article  Google Scholar 

  • Buscheck TA, Elliot TR, Celia MA, Chen M, Sun Y, Hao Y, Lu C, Wolery TJ, Aines RD (2013) Integrated geothermal-\(\text{ CO}_2\) reservoir systems : reducing carbon intensity through sustainable energy production and secure \(\text{ CO}_2\) storage. Energy Procedia 37:6587–6594

    Article  Google Scholar 

  • Buscheck TA, Bielicki JM, Edmunds TA, Hao Y, Sun Y, Randolph JB, Saar MO (2016a) Multifluid geo-energy systems: using geologic \(\text{ CO}_2\) storage for geothermal energy production and grid-scale energy storage in sedimentary basins. Geosphere 12(3):678–696

    Article  Google Scholar 

  • Buscheck TA, Bielicki JM, White JA, Sun Y, Hao Y, Bourcier WL, Carroll SA, Aines RD (2016b) Pre-injection brine production in \(\text{ CO}_2\) storage reservoirs: an approach to augment the development, operation, and performance of CCS while generating water. Int J Greenh Gas Control 54:499–512

    Article  Google Scholar 

  • Buscheck TA, White JA, Carroll SA, Bielicki JM, Aines RD (2016c) Managing geologic CO\(_2\) storage with pre-injection brine production: a strategy evaluated with a model of CO\(_2\) injection at Snøhvit. Energy Environ Sci 9:1504–1512

    Article  Google Scholar 

  • Buscheck TA, Bielicki JM, Randolph JB (2017) \(\text{ CO}_2\) earth storage: enhanced geothermal energy and water recovery and energy storage. Energy Procedia 114(November 2016):6870–6879

    Article  Google Scholar 

  • Carapezza ML, Granieri D (2004) \(\text{ CO}_2\) soil flux at Vulcano (Italy): comparison between active and passive methods. Appl Geochem 19(1):73–88

    Article  Google Scholar 

  • Carapezza ML, Ranaldi M, Gattuso A, Pagliuca NM, Tarchini L (2015) The sealing capacity of the cap rock above the Torre Alfina geothermal reservoir (Central Italy) revealed by soil \(\text{ CO}_2\) flux investigations. J Volcanol Geotherm Res 291:25–34

    Article  Google Scholar 

  • Castillo C, Knopf S, Kervévan C, May F (2014) CO2-DISSOLVED : a novel concept coupling geological storage of dissolved \(\text{ CO}_2\) and geothermal heat recovery—Part 2: assessment of the potential industrial applicability in France. Energy Procedia 63:4519–4535

    Article  Google Scholar 

  • Ceriotti G, Porta GM, Geloni C, Dalla Rosa M, Guadagnini A (2017) Quantification of \(\text{ CO}_2\) generation in sedimentary basins through carbonate/clays reactions with uncertain thermodynamic parameters. Geochim et Cosmochim Acta 213:198–215

    Article  Google Scholar 

  • Chen Y, Ma G, Wang H, Li T, Wang Y (2019) Application of carbon dioxide as working fluid in geothermal development considering a complex fractured system. Energy Convers Manag 180:1055–1067

    Article  Google Scholar 

  • Chiodini G, Baldini A, Barberi F, Carapezza M, Cardellini M, Frondini F, Granieri D, Rinaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204

    Article  Google Scholar 

  • Cihan A, Birkholzer JT, Bianchi M (2015) Optimal well placement and brine extraction for pressure management during CO\(_{2}\) sequestration. Int J Greenh Gas Control 42:175–187

    Article  Google Scholar 

  • Court B, Bandilla KW, Celia MA, Buscheck TA, Nordbotten JM, Dobossy M, Janzen A (2012) Initial evaluation of advantageous synergies associated with simultaneous brine production and CO\(_2\) geological sequestration. Int J Greenh Gas Control 8:90–100

    Article  Google Scholar 

  • Cui G, Zhang L, Ren S (2017) Combined effects of geochemical reactions and salt precipitation on geothermal exploitation in the CPG system. Energy Procedia 105:1276–1281. In: 8th International conference on applied energy, ICAE2016, 8–11 October 2016, Beijing

  • Cui G, Ren S, Rui Z, Ezekiel J, Zhang L, Wang H (2018a) The influence of complicated fluid-rock interactions on the geothermal exploitation in the \(\text{ CO}_2\) plume geothermal system. Appl Energy 227:49–63

    Article  Google Scholar 

  • Cui G, Ren S, Zhang L, Wang Y, Zhang P (2018b) Injection of supercritical \(\text{ CO}_2\) for geothermal exploitation from single- and dual-continuum reservoirs: heat mining performance and salt precipitation effect. Geothermics 73(November 2017):48–59

    Article  Google Scholar 

  • Dempsey D, Kelkar S, Pawar R (2014) Passive injection: a strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic \(\text{ CO}_2\) storage. Int J Greenh Gas Control 28:96–113

    Article  Google Scholar 

  • De-Simone S, Vilarrasa V, Carrera J, Alcolea A, Meier P (2013) Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection. Phys Chem Earth 64:117–126

    Article  Google Scholar 

  • De-Simone S, Carrera J, Gómex-Castro B (2017) A practical solution to the mechanical perturbations induced by non-isothermal injection into a permeable medium. Int J Rock Mech Min Sci 91:7–17

    Article  Google Scholar 

  • Diaz A, Kaya E, Zarrouk S (2016) Reinjection in geothermal fields—a worldwide review update. Renew Sustain Energy Rev 53:105–162

    Article  Google Scholar 

  • Elliot T, Buscheck T, Celia M (2013) Active CO\(_{2}\) reservoir management for sustainable geothermal energy extraction and reduced leakage. Greenh Gases Sci Technol 3:50–65

    Article  Google Scholar 

  • Ennis-King J, Paterson L (2005) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Soc Pet Eng 10(3):349–356

    Google Scholar 

  • Fard H, Hookman K, Chua H (2010) Numerical simulation of a supercritical CO\(_{2}\) geothermosiphon. Int Commun Heat Mass Transf 37(10):1447–1451

    Article  Google Scholar 

  • Flemming M, Adams B, Kuehn T, Bielicki J, Saar MO (2019) Benefits of using active reservoir management during CO\(_2\)-plume development for CO\(_2\)-plume geothermal (CPG) systems. In: 44th workshop on geothermal reservoir engineering. Stanford University, Stanford. SGP-TR-214

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem 24(5):860–875

    Article  Google Scholar 

  • Fuchs S (2018) The variability of rock thermal properties in sedimentary basins and the impact on temperature modelling—a Danish example. Geothermics 76(June):1–14

    Article  Google Scholar 

  • Ganjdanesh R, Bryant S, Orbach R, Pope G, Sepehrnoori K (2014) Coupled carbon dioxide sequestration and energy production from geopressured/geothermal aquifers. SPE J 19(02):239–248

    Article  Google Scholar 

  • Garapati N, Randolph JB, Valencia JL, Saar MO (2014) \(\text{ CO}_2\)-plume geothermal (CPG) heat extraction in multi-layered geologic reservoirs. Energy Procedia 63:7631–7643

    Article  Google Scholar 

  • Garapati N, Randolph JB, Saar MO (2015) Brine displacement by \(\text{ CO}_2\), energy extraction rates, and lifespan of a \(\text{ CO}_2\)-limited \(\text{ CO}_2\)-Plume Geothermal (CPG) system with a horizontal production well. Geothermics 55:182–194

    Article  Google Scholar 

  • Garapati N, Adams BM, Bielicki JM, Schaedle P, Randolph JB, Kuehn TH, Saar MO (2017) A hybrid geothermal energy conversion technology - a potential solution for production of electricity from shallow geothermal resources. Energy Procedia 114:7107 – 7117. In: 13th international conference on greenhouse gas control technologies, GHGT-13, 14–18 November 2016, Lausanne, Switzerland

  • Geng J, Sun Q, Zhang Y, Cao L, Lü C, Zhang Y (2018) Temperature dependence of the thermal diffusivity of sandstone. J Pet Sci Eng 164:110–116

    Article  Google Scholar 

  • González-Nicolás A, Cihan A, Petrusak R, Zhou Q, Trautz R, Riestenberg D, Godec M, Birkholzer JT (2019) Pressure management via brine extraction in geological CO\(_{2}\) storage: adaptive optimization strategies under poorly characterized reservoir conditions. Int J Greenh Gas Control 83:176–185

    Article  Google Scholar 

  • Grab M, Quintal B, Caspari E, Deuber C, Maurer H, Greenhalgh S (2017) The effect of boiling on seismic properties of water-saturated fractured rock. J Geophys Res Solid Earth 122(11):9228–9252

    Article  Google Scholar 

  • Griggs J (2004) A re-evaluation of geopressured-geothermal aquifers as an energy resources. Ph.D. thesis, LSU Master’s Theses, 2151

  • Gupta H, Roy S (2007) Chapter 4—geothermal systems and resources. In: Gupta H, Roy S (eds) Geotherm Energy. Elsevier, Amsterdam, pp 49–59

    Chapter  Google Scholar 

  • Hamm V, Kervévan C, Thiéry D (2014) \(\text{ CO}_2\)-DISSOLVED: a novel concept coupling geological storage of dissolved \(\text{ CO}_2\) and geothermal heat recovery—part 4: preliminary thermo-hydrodynamic simulations to assess the \(\text{ CO}_2\) storage efficiency. Energy Procedia 63:4548–4560

    Article  Google Scholar 

  • Harp DR, Stauffer PH, O’Malley D, Jiao Z, Egenolf EP, Miller TA, Martinez D, Hunter KA, Middleton RS, Bielicki JM, Pawar R (2017) Development of robust pressure management strategies for geologic \(\text{ CO}_2\) sequestration. Int J Greenh Gas Control 64(June):43–59

    Article  Google Scholar 

  • Hosseini SA, Nicot J-P (2012) Scoping analysis of brine extraction/re-injection for enhanced CO\(_2\) storage. Greenh Gases Sci Technol 2(3):172–184

    Article  Google Scholar 

  • Hsieh J, Lin DT, Wei C, Huang H (2014a) The heat extraction investigation of supercritical carbon dioxide flow in heated porous media. Energy Procedia 61:262–265. In: International conference on applied energy, ICAE 2014

  • Hsieh JC, Lee BH, Lin DTW, Chung MC (2014b) Experimental study of the heat transfer of supercritical carbon dioxide in silica-based porous media. Energy Procedia 61:914–917

    Article  Google Scholar 

  • Hunter K, Bielicki JM, Middleton R, Stauffer P, Pawar R, Harp D, Martinez D (2017) Integrated \(\text{ CO}_2\) Storage and Brine Extraction. Energy Procedia 114:6331–6336

    Article  Google Scholar 

  • Huppert HE, Neufeld JA (2014) The fluid mechanics of carbon dioxide sequestration. Ann Rev Fluid Mech 46(1):255–272

    Article  MathSciNet  MATH  Google Scholar 

  • Iglauer S, Pentland CH, Busch A (2015) C0o\(_2\) wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour Res 51(1):729–774

    Article  Google Scholar 

  • Ingebritsen SE, Ingebritsen SE, Geiger S, Geiger S, Hurwitz S, Hurwitz S (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48(2009):1–33

    Google Scholar 

  • Inguaggiato S, Diliberto IS, Federico C, Paonita A, Vita F (2018) Review of the evolution of geochemical monitoring, networks and methodologies applied to the volcanoes of the Aeolian Arc (Italy). Earth Sci Rev 176:241–276

    Article  Google Scholar 

  • Institute EPR (1978) Geothermal energy prospects for the next 50 years, Preliminary report to the conservation commission world energy conference. Electric Power Research Institute. ER-611-SR

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York

    Google Scholar 

  • Isaka BA, Ranjith P, Rathnaweera T (2019) The use of super-critical carbon dioxide as the working fluid in enhanced geothermal systems (EGSs): a review study. Sustain Energy Technol Assess 36:100547

    Google Scholar 

  • Jahediesfanjani H, Anderson ST, Warwick PD (2019) Improving pressure-limited \(\text{ CO}_2\) storage capacity in saline formations by means of brine extraction. Int J Greenh Gas Control 88(June):299–310

    Article  Google Scholar 

  • Jayne RS, Zhang Y, Pollyea RM (2019) Using heat as a predictor of CO\(_2\) breakthrough in highly heterogeneous reservoirs. Geophys Res Lett 46(11):5879–5888

    Article  Google Scholar 

  • Jenkins C, Chadwick A, Hovorka SD (2015) The state of the art in monitoring and verification—ten years on. Int J Greenh Gas Control 40:312–349. Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on \(\text{ CO}_{2}\) Capture and Storage

  • Jiang P, Li X, Xu R, Zhang F (2016) Heat extraction of novel underground well pattern systems for geothermal energy exploitation. Renew Energy 90:83–94

    Article  Google Scholar 

  • Jiao Z (2017) A field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extraction at the rock springs uplift: a priority geologic \(\text{ CO}_2\) storage site for wyoming. Energy Procedia 114:2799–2811

    Article  Google Scholar 

  • Jobard E, Sterpenich J, Pironon J, Corvisier J, Jouanny M, Randi A (2013) Experimental simulation of the impact of a thermal gradient during geological sequestration of \(\text{ CO}_2\): the COTAGES experiment. Int J Greenh Gas Control 12:56–71

    Article  Google Scholar 

  • Kaya E (2016a) Modelling reinjection into vapour-dominated two-phase systems: part 1—experiments on model design. Geothermics 60:175–195

    Article  Google Scholar 

  • Kaya E (2016b) Modelling reinjection into vapour-dominated two-phase systems: part 2—reinjection experiments on the 3D model. Geothermics 60:196–217

    Article  Google Scholar 

  • Kervévan C, Frédérik B, Galiégue X, Gallo YL, May F, O’Neil K, Sterpenich J (2013) \(\text{ CO}_2\)-DISSOLVED : a novel concept coupling geological storage of dissolved \(\text{ CO}_2\) and geothermal heat recovery. In: sustainable earth sciences EAGE

  • Kervévan C, Beddelem M, Neil KO (2014) \(\text{ CO}_2\) -DISSOLVED : a novel concept coupling geological storage of dissolved \(\text{ CO}_2\) and geothermal heat recovery—part 1: assessment of the integration of an innovative low-cost, water- based \(\text{ CO}_2\) capture technology. Energy Procedia 63:4508–4518

    Article  Google Scholar 

  • Kim S, Hosseini SA (2015) Hydro-thermo-mechanical analysis during injection of cold fluid into a geologic formation. Int J Rock Mech Min Sci 77:220–236

    Article  Google Scholar 

  • Kim KY, Han WS, Oh J, Kim T, Kim JC (2012) Characteristics of salt-precipitation and the associated pressure build-up during \(\text{ CO}_2\) storage in saline aquifers. Transp Porous Media 92(2):397–418

    Article  Google Scholar 

  • Lei Q, Latham J-P, Tsang C-F (2017) The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput Geotech 85:151–176

    Article  Google Scholar 

  • Lemmon E, McLinden M, Friend D (2019) Thermophysical properties of fluid systems, in nist chemistry webbook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg, 20899. Accessed 4 June 2019

  • Li S, Akbarabadi M, Zhang Y, Piri M (2016a) An integrated site characterization-to-optimization study for commercial-scale carbon dioxide storage. Int J Greenh Gas Control 44:74–87

    Article  Google Scholar 

  • Li W, Soliman M, Han Y (2016b) Microscopic numerical modeling of Thermo-Hydro-Mechanical mechanisms in fluid injection process in unconsolidated formation. J Pet Sci Eng 146:959–970

    Article  Google Scholar 

  • Liu L, Suto Y, Bignall G, Yamasaki N, Hashida T (2003) \(\text{ CO}_2\) injection to granite and sandstone in experimental rock/hot water systems. Energy Convers Manag 44(9):1399–1410

    Article  Google Scholar 

  • Liu D, Agarwal R, Li Y (2016) Numerical simulation and optimization of \(\text{ CO}_2\)-enhanced water recovery by employing a genetic algorithm. J Clean Prod 133:994–1007

    Article  Google Scholar 

  • Liu Y, Wang G, Yue G, Lu C, Zhu X (2017) Impact of \(\text{ CO}_2\) injection rate on heat extraction at the HDR geothermal field of Zhacanggou, China. Environ Earth Sci 76(6):1–11

    Google Scholar 

  • Lu SM (2018) A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81(April 2017):2902–2921

    Article  Google Scholar 

  • Luhmann AJ, Kong XZ, Tutolo BM, Ding K, Saar MO, Seyfried WE (2013) Permeability reduction produced by grain reorganization and accumulation of exsolved \(\text{ CO}_2\) during geologic carbon sequestration: A new \(\text{ CO}_2\) trapping mechanism. Environ Sci Technol 47(1):242–251

    Article  Google Scholar 

  • Luo F, Xu RN, Jiang PX (2013) Numerical study of the influence of injection/production well perforation location on \(\text{ CO}_2\)-EGS system. Energy Procedia 37(8610):6636–6643

    Article  Google Scholar 

  • Luo F, Xu RN, Jiang PX (2014) Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with \(\text{CO}_2\) as the working fluid (CO2-EGS). Energy 64:307–322

    Article  Google Scholar 

  • Magliocco MJ, Glaser SD, Kneafsey TJ (2015) Laboratory and numerical studies of heat extraction from hot porous media by means of supercritical \(\text{ CO}_2\). Transp Porous Media 108(1):85–104

    Article  Google Scholar 

  • Matthäi SK, Belayneh M (2004) Fluid flow partitioning between fractures and a permeable rock matrix. Geophys Res Lett 31(7):1–5

    Article  Google Scholar 

  • Mutailipu M, Liu Y, Jiang L, Zhang Y (2019) Measurement and estimation of \(\text{ CO}_2\)-brine interfacial tension and rock wettability under \(\text{ CO}_2\) sub- and super-critical conditions. J Colloid Interface Sci 534:605–617

    Article  Google Scholar 

  • Na J, Xu T, Yuan Y, Feng B, Tian H, Bao X (2015) An integrated study of fluid-rock interaction in a \(\text{ CO}_{2}\)-based enhanced geothermal system: a case study of Songliao Basin, China. Appl Geochem 59:166–177

    Article  Google Scholar 

  • Ogland-Hand JD, Bielicki JM, Buscheck TA (2017) The value of \(\text{ CO}_2\)-bulk energy storage to reducing \(\text{ CO}_2\) emissions. Energy Procedia 114:6886–6892

    Article  Google Scholar 

  • Ogland-Hand JD, Bielicki JM, Wang Y, Adams BM, Buscheck TA, Saar MO (2019) The value of bulk energy storage for reducing \(\text{ CO}_2\) emissions and water requirements from regional electricity systems. Energy Convers Manag 181:674–685

    Article  Google Scholar 

  • Olasolo P, Juárez MC, Morales MP, Damico S, Liarte IA (2016) Enhanced geothermal systems (EGS): a review. Renew Sustain Energy Rev 56:133–144

    Article  Google Scholar 

  • Orlando A, Conte AM, Borrini D, Perinelli C, Gianelli G, Tassi F (2010) Experimental investigation of \(\text{ CO}_2\)-rich fluids production in a geothermal area: the Mt Amiata (Tuscany, Italy) case study. Chem Geol 274(3–4):177–186

    Article  Google Scholar 

  • Othman F, Yu M, Kamali F, Hussain F (2018) Fines migration during supercritical \(\text{ CO}_2\) injection in sandstone. J Nat Gas Sci Eng 56:344–357

    Article  Google Scholar 

  • Pan L, Freifeld B, Doughty C, Zakem S, Sheu M, Cutright B, Terrall T (2015) Fully coupled wellbore-reservoir modeling of geothermal heat extraction using \(\text{ CO}_2\) as the working fluid. Geothermics 53:100–113

    Article  Google Scholar 

  • Pan C, Chávez O, Romero CE, Levy EK, Aguilar Corona A, Rubio-Maya C (2016) Heat mining assessment for geothermal reservoirs in Mexico using supercritical \(\text{ CO}_2\) injection. Energy 102:148–160

    Article  Google Scholar 

  • Pan C, Romero CE, Levy EK, Wang X, Rubio-Maya C, Pan L (2018) Fully coupled wellbore-reservoir simulation of supercritical \(\text{ CO}_2\) injection from fossil fuel power plant for heat mining from geothermal reservoirs. J CO2 Util 27:480–492

    Article  Google Scholar 

  • Pan S-Y, Gao M, Shah KJ, Zheng J, Pei S-L, Chiang P-C (2019) Establishment of enhanced geothermal energy utilization plans : barriers and strategies. Renew Energy 132:19–32

    Article  Google Scholar 

  • Pandey SN, Vishal V, Chaudhuri A (2018) Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: a review. Earth Sci Rev 185:1157–1169

    Article  Google Scholar 

  • Pawar RJ, Bromhal GS, Carey JW, Foxall W, Korre A, Ringrose PS, Tucker O, Watson MN, White JA (2015) Recent advances in risk assessment and risk management of geologic CO\(_{2}\) storage. Int J Greenh Gas Control 40:292–311. Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on \(\text{ CO}_{2}\) Capture and Storage

  • Polak A, Elsworth D, Yasuhara H, Grader AS, Halleck PM (2003) Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophys Res Lett 30(20):1–4

    Article  Google Scholar 

  • Pruess K (2006) Enhanced geothermal systems ( EGS ) using \(\text{ CO}_2\) as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367

    Article  Google Scholar 

  • Pruess K (2008) On production behavior of enhanced geothermal systems with CO\(_2\) as working fluid. Energy Convers Manag 49(6):1446–1454

    Article  Google Scholar 

  • Pruess K (2009) Formation dry-out from CO\(_{2}\) injection into saline aquifers: 2. Analytical model for salt precipitation. Water Resour Res 45:W03403

    Google Scholar 

  • Pruess K, Müller N (2009) Formation dry-out from CO\(_{2}\) injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resour Res 45:W03402

  • Raharjo IB, Allis RG, Chapman DS (2016) Volcano-hosted vapor-dominated geothermal systems in permeability space. Geothermics 62:22–32

    Article  Google Scholar 

  • Randi A, Sterpenich J, Morlot C, Pironon J, Kervévan C, Beddelem MH, Fléhoc C (2014) \(\text{ CO}_2\)-DISSOLVED: a novel concept coupling geological storage of dissolved \(\text{ CO}_2\) and geothermal heat recovery—part 3: design of the MIRAGES-2 experimental device dedicated to the study of the geochemical water-rock interactions triggered by \(\text{ CO}_2\) laden brine injection. Energy Procedia 63:4536–4547

    Article  Google Scholar 

  • Randolph J, Saar M (2010) Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems. GRC Trans 34:433–438

    Google Scholar 

  • Randolph JB, Saar MO (2011a) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38(10):L10401

    Article  Google Scholar 

  • Randolph JB, Saar MO (2011b) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for \(\text{ CO}_2\) sequestration. Energy Procedia 4:2206–2213

    Article  Google Scholar 

  • Randolph JB, Saar MO, Bielicki J (2013) Geothermal energy production at geologic \(\text{ CO}_2\) sequestration sites: impact of thermal drawdown on reservoir pressure. Energy Procedia 37:6625–6635

    Article  Google Scholar 

  • Riaz A, Hesse M, Tchelepi HA, Orr FM (2006) Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J Fluid Mech 548:87–111

    Article  MathSciNet  Google Scholar 

  • Rosenbauer RJ, Koksalan T, Palandri JL (2005) Experimental investigation of \(\text{ CO}_2\)-brine-rock interactions at elevated temperature and pressure: implications for \(\text{ CO}_2\) sequestration in deep-saline aquifers. Fuel Process Technol 86(14–15):1581–1597

    Article  Google Scholar 

  • Rutqvist J (2008) Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with \(\text{ CO}_2\) injection in multilayered reservoir-caprock systems. Int J Rock Mech Min Sci 45(2):132–143

    Article  Google Scholar 

  • Rutqvist J (2012) The geomechanics of \(\text{ CO}_2\) storage in deep sedimentary formations. Geotech Geol Eng 30(3):525–551

    Article  Google Scholar 

  • Rutqvist J, Birkholzer J, Cappa F, Tsang CF (2007) Estimating maximum sustainable injection pressure during geological sequestration of \(\text{ CO}_2\) using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48(6):1798–1807

    Article  Google Scholar 

  • Safari R, Ghassemi A (2015) 3D thermo-poroelastic analysis of fracture network deformation and induced micro-seismicity in enhanced geothermal systems. Geothermics 58:1–14

    Article  Google Scholar 

  • Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO\(_2\). Chem Soc Rev 43:8049–8080

    Article  Google Scholar 

  • Santibanez-Borda E, Govindan R, Elahi N, Korre A, Durucan S (2019) Maximising the dynamic \(\text{ CO}_2\) storage capacity through the optimisation of \(\text{ CO}_2\) injection and brine production rates. Int J Greenh Gas Control 80:76–95

    Article  Google Scholar 

  • Sbai MA, Azaroual M (2011) Numerical modeling of formation damage by two-phase particulate transport processes during \(\text{ CO}_2\) injection in deep heterogeneous porous media. Adv Water Res 34(1):62–82

    Article  Google Scholar 

  • Selosse S, Ricci O (2017) Carbon capture and storage: lessons from a storage potential and localization analysis. Appl Energy 188:32–44

    Article  Google Scholar 

  • Shaik AR, Rahman SS, Tran NH, Tran T (2011) Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Appl Therm Eng 31(10):1600–1606

    Article  Google Scholar 

  • Shao S, Wasantha P, Ranjith P, Chen B (2014) Effect of cooling rate on the mechanical behavior of heated strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70:381–387

    Article  Google Scholar 

  • Singh M, Chaudhuri A, Chu SP, Stauffer PH, Pawar RJ (2019) Analysis of evolving capillary transition, gravitational fingering, and dissolution trapping of \(\text{ CO}_2\) in deep saline aquifers during continuous injection of supercritical \(\text{ CO}_2\). Int J Greenh Gas Control 82:281–297

    Article  Google Scholar 

  • Siqueira TA, Iglesias RS, Ketzer JM (2017) Carbon dioxide injection in carbonate reservoirs—a review of CO\(_{2}\)-water-rock interaction studies. Greenh Gases Sci Technol 7(5):802–816

    Article  Google Scholar 

  • Sokama-Neuyam YA, Ginting PUR, Timilsina B, Ursin JR (2017) The impact of fines mobilization on \(\text{ CO}_2\) injectivity: an experimental study. Int J Greenh Gas Control 65(September 2016):195–202

    Article  Google Scholar 

  • Soltanian MR, Amooie MA, Dai Z, Cole D, Moortgat J (2016) Critical dynamics of gravito-convective mixing in geological carbon sequestration. Sci Rep 6(2):35921

    Article  Google Scholar 

  • Sterpenich J, Jobard E, Pironon J, Randi A, Lorraine UD, Vandœuvre F (2015) Experimental simulation of the impact of a thermal gradient on a clayey caprock submitted to the combined action of water and \(\text{ CO}_2\). Proc World Geotherm Congr 2015:2–7

    Google Scholar 

  • Straus JM, Schubert G (1981) One-dimensional model of vapor dominated geothermal systems. J Geophys Res 86:9433–9438

    Article  Google Scholar 

  • Tang Y, Ma T, Chen P, Ranjith PG (2019) An analytical model for heat extraction through multi-link fractures of the enhanced geothermal system. Geomech Geophys Geo Energy Geo Res 6(1):1

    Google Scholar 

  • Thorsteinsson H, Augustine C, Anderson BJ, Moore MCMC, Tester JW, Hildigunnur T, Augustine C, Anderson BJ, Moore MCMC, Tester JW (2008) The Impacts of drilling and reservoir technology advances on EGS. In: Proceedings, thirty-third workshop on geothermal reservoir engineering

  • Torsæter M, Cerasi P (2018) Geological and geomechanical factors impacting loss of near-well permeability during \(\text{ CO }_2\) injection. Int J Greenh Gas Control 76:193–199

    Article  Google Scholar 

  • Truesdell AH, White DE (1973) Production of superheated steam from vapor-dominated geothermal reservoirs. Geothermics 2(3–4):154–173

    Article  Google Scholar 

  • Tutolo BM, Luhmann AJ, Kong XZ, Saar MO, Seyfried WE (2014) Experimental observation of permeability changes in dolomite at \(\text{ CO}_2\) sequestration conditions. Environ Sci Technol 48(4):2445–2452

    Google Scholar 

  • Tutolo BM, Kong XZ, Seyfried WE, Saar MO (2015) High performance reactive transport simulations examining the effects of thermal, hydraulic, and chemical (THC) gradients on fluid injectivity at carbonate CCUS reservoir scales. Int J Greenh Gas Control 39:285–301

    Article  Google Scholar 

  • Uribe-Patiño JA, Alzate-Espinosa GA, Arbeláez-Londoño A (2017) Geomechanical aspects of reservoir thermal alteration: a literature review. J Pet Sci Eng 152:250–266

    Article  Google Scholar 

  • Vignaroli G, Pinton A, De Benedetti AA, Giordano G, Rossetti F, Soligo M, Berardi G (2013) Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy). Tectonophysics 608:482–498

    Article  Google Scholar 

  • Vilarrasa V (2014) Impact of \(\text{ CO}_2\) injection through horizontal and vertical wells on the caprock mechanical stability. Int J Rock Mech Min Sci 66:151–159

    Article  Google Scholar 

  • Vilarrasa V (2016) The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage. Geofluids 16(5):941–953

    Article  Google Scholar 

  • Vilarrasa V, Carrera J (2015) Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which \(\text{ CO}_2\) could leak. Proc Natl Acad Sci 112(19):5938–5943

    Article  Google Scholar 

  • Vilarrasa V, Laloui L (2015) Potential fracture propagation into the caprock induced by cold \(\text{ CO}_2\) injection in normal faulting stress regimes. Geomech Energy Environ 2:22–31

    Article  Google Scholar 

  • Vilarrasa V, Rutqvist J (2017) Thermal effects on geologic carbon storage. Earth Sci Rev 165:245–256

    Article  Google Scholar 

  • Vilarrasa V, Olivella S, Carrera J, Rutqvist J (2014) Long term impacts of cold \(\text{ CO}_2\) injection on the caprock integrity. Int J Greenh Gas Control 24:1–13

    Article  Google Scholar 

  • Vilarrasa V, Rutqvist J, Rinaldi AP (2015) Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria. Greenh Gases Sci Technol 5:1–13

    Article  Google Scholar 

  • Vilarrasa V, Rinaldi AP, Rutqvist J (2017) Long-term thermal effects on injectivity evolution during \(\text{ CO}_2\) storage. Int J Greenh Gas Control 64(May):314–322

    Article  Google Scholar 

  • Wang CL, Cheng WL, Nian YL, Yang L, Han BB, Liu MH (2018) Simulation of heat extraction from \(\text{ CO}_2\)-based enhanced geothermal systems considering \(\text{ CO}_2\) sequestration. Energy 142:157–167

    Article  Google Scholar 

  • Wang C, Huang Z, Lu Y, Tang G, Li H (2019a) Influences of reservoir heterogeneity and anisotropy on CO\(_2\) sequestration and heat extraction for CO\(_2\)-based enhanced geothermal system. J Therm Sci 28(2):319–325

    Article  Google Scholar 

  • Wang Y, Li T, Chen Y, Ma G (2019b) Numerical analysis of heat mining and geological carbon sequestration in supercritical \(\text{ CO}_2\) circulating enhanced geothermal systems inlayed with complex discrete fracture networks. Energy 173:92–108

    Article  Google Scholar 

  • Wang Y, Li T, Chen Y, Ma G (2019c) A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks. Comput Methods Appl Mech Eng 356:465–489

    Article  MathSciNet  Google Scholar 

  • Wangen M, Halvorsen G, Gasda SE, Bjørnarå T (2018) An analytical plane-strain solution for surface uplift due to pressurized reservoirs. Geomech Energy Environ 13:25–34

    Article  Google Scholar 

  • White DE, WD (1975) Assessment of geothermal resources of the united states-1975. Technical Report 726, Geological Survey Circular

  • Xu XF, Chen SY, Zhang DX (2006) Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv Water Resour 29(3):397–407

    Article  Google Scholar 

  • Xu T, Feng G, Shi Y (2014) On fluid-rock chemical interaction in \(\text{ CO}_2\)-based geothermal systems. J Geochem Explor 144:179–193

    Article  Google Scholar 

  • Xu T, Zhu H, Feng G, Yuan Y, Tian H (2017) On fluid and thermal dynamics in a heterogeneous \(\text{CO}_2\) plume geothermal reservoir. Geofluids. https://doi.org/10.1155/2017/9692517

    Article  Google Scholar 

  • Yang YM, Dilmore RM, Mansoor K, Buscheck TA, Bromhal GS (2019) Integration of wellbore pressure measurement and groundwater quality monitoring to enhance detectability of brine and \(\text{ CO}_2\) leakage. Int J Greenh Gas Control 85(April):143–155

    Article  Google Scholar 

  • Zhang Y, Zhao G-F (2019) A global review of deep geothermal energy exploration: from a view of rock mechanics and engineering. Geomech Geophys Geo Energy Geo Resour 6(1):4

    Article  Google Scholar 

  • Zhang F-Z, Jiang P-X, Xu R-N (2013) System thermodynamic performance comparison of \(\text{ CO}_2\)-EGS and water-EGS systems. Appl Therm Eng 61(2):236–244

    Article  Google Scholar 

  • Zhang L, Ezekiel J, Li D, Pei J, Ren S (2014a) Potential assessment of \(\text{ CO}_2\) injection for heat mining and geological storage in geothermal reservoirs of China. Appl Energy 122:237–246

    Article  Google Scholar 

  • Zhang L, Luo F, Xu R, Jiang P, Liu H (2014b) Heat transfer and fluid transport of supercritical \(\text{ CO}_2\) in enhanced geothermal system with local thermal non-equilibrium model. Energy Procedia 63:7644–7650

    Article  Google Scholar 

  • Zhang L, Cui G, Zhang Y, Ren B, Ren S, Wang X (2016a) Influence of pore water on the heat mining performance of supercritical \(\text{ CO}_2\) injected for geothermal development. J CO2 Util 16:287–300

    Article  Google Scholar 

  • Zhang R, Xiong Y, Winterfeld PH, Yin X, Wu Y-S (2016b) A novel computational framework for thermal-hydrological-mechanical-chemical processes of \(\text{ CO}_2\) geological sequestration into a layered saline aquifer and a naturally fractured enhanced geothermal system. Greenh Gases Sci Technol 2(6):370–400

    Article  Google Scholar 

  • Zhang L, Jiang P, Wang Z, Xu R (2017) Convective heat transfer of supercritical \(\text{ CO}_2\) in a rock fracture for enhanced geothermal systems. Appl Therm Eng 115:923–936

    Article  Google Scholar 

  • Zhu H, Xu T, Tian H, Feng G, Yang Z, Zhou B (2019) Understanding of long-term \(\text{ CO}_2\)-brine-rock geochemical reactions using numerical modeling and natural analogue study. Geofluids 2019:1426061

    Google Scholar 

  • Ziemkiewicz P, Stauffer PH, Sullivan-Graham J, Chu SP, Bourcier WL, Buscheck TA, Carr T, Donovan J, Jiao Z, Lin L, Song L, Wagoner JL (2016) Opportunities for increasing \(\text{ CO}_2\) storage in deep, saline formations by active reservoir management and treatment of extracted formation water: case study at the GreenGen IGCC facility, Tianjin, PR China. Int J Greenh Gas Control 54:538–556

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of Ph.D. by Mrityunjay Singh at IIT Madras, funded by MHRD, Government of India. We thank the anonymous reviewers for their valuable suggestions which helped authors in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chaudhuri.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Tangirala, S.K. & Chaudhuri, A. Potential of \(\hbox {CO}_{2}\) based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration. Geomech. Geophys. Geo-energ. Geo-resour. 6, 16 (2020). https://doi.org/10.1007/s40948-019-00139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-019-00139-8

Keywords

Navigation