Skip to main content
Log in

Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We study the asymptotics of the ruin probability for a process which is the solution of a linear SDE defined by a pair of independent Lévy processes. Our main interest is a model describing the evolution of the capital reserve of an insurance company selling annuities and investing in a risky asset. Let \(\beta >0\) be the root of the cumulant-generating function \(H\) of the increment \(V_{1}\) of the log-price process. We show that the ruin probability admits the exact asymptotic \(Cu^{-\beta }\) as the initial capital \(u\to \infty \), assuming only that the law of \(V_{T}\) is non-arithmetic without any further assumptions on the price process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. That is, the distribution is not concentrated on a set \({{\mathbb{Z}}d}=\{0,\pm d, \pm 2d,\dots \}\) for some \(d\).

  2. Other truncation functions are also used in the literature; see e.g. [32].

References

  1. Albrecher, H., Badescu, A., Landriault, D.: On the dual risk model with taxation. Insur. Math. Econ. 42, 1086–1094 (2008)

    Article  Google Scholar 

  2. Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010)

    Book  Google Scholar 

  3. Avanzi, B., Gerber, H.U., Shiu, E.S.W.: Optimal dividends in the dual model. Insur. Math. Econ. 41, 111–123 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bankovsky, D., Klüppelberg, C., Maller, R.: On the ruin probability of the generalised Ornstein–Uhlenbeck process in the Cramér case. J. Appl. Probab. 48A, 15–28 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bayraktar, E., Egami, M.: Optimizing venture capital investments in a jump diffusion model. Math. Methods Oper. Res. 67, 21–42 (2008)

    Article  MathSciNet  Google Scholar 

  6. Behme, A., Lindner, A., Maejima, M.: On the range of exponential functionals of Lévy processes. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XLVIII. Lecture Notes in Mathematics, vol. 2168, pp. 267–303. Springer, Berlin (2016)

    Chapter  Google Scholar 

  7. Belkina, T.A., Konyukhova, N.B., Kurochkin, S.V.: Dynamical insurance models with investment: constrained singular problems for integrodifferential equations. Comput. Math. Math. Phys. 56, 43–92 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bichteler, K., Jacod, J.: Calcul de Malliavin pour les diffusions avec sauts: existence d’une densité dans le cas unidimensionnel. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XVII. Lecture Notes in Mathematics, vol. 986, pp. 132–157. Springer, Berlin (1983)

    Google Scholar 

  9. Buraczewski, D., Damek, E.: A simple proof of heavy tail estimates for affine type Lipschitz recursions. Stoch. Process. Appl. 127, 657–668 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Financial Mathematics Series. Chapman & Hall/CRC Press, London/Boca Raton (2004)

    MATH  Google Scholar 

  11. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 1990, 39–79 (1990)

    Article  MathSciNet  Google Scholar 

  12. Elton, J.H.: A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34, 39–47 (1990)

    Article  MathSciNet  Google Scholar 

  13. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  14. Frolova, A., Kabanov, Yu.: Pergamenshchikov S.: in the insurance business risky investments are dangerous. Finance Stoch. 6, 227–235 (2002)

    Article  MathSciNet  Google Scholar 

  15. Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126–166 (1991)

    Article  MathSciNet  Google Scholar 

  16. Grandell, I.: Aspects of Risk Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  17. Grincevic̆ius, A.K.: One Limit Theorem for a Random Walk on the Line. Institute of Physics and Mathematics, Academy of Sciences of the Lithuanian SSR, vol. 15, pp. 79–91 (1975)

    Google Scholar 

  18. Guivarc’h, Y., Le Page, E.: On the homogeneity at infinity of the stationary probability for an affine random walk. In: Bhattacharya, S., et al. (eds.) Recent Trends in Ergodic Theory and Dynamical Systems. Contemporary Mathematics, pp. 119–130. AMS, Providence (2015)

    Google Scholar 

  19. Iksanov, A., Polotskiy, S.: Tail behavior of suprema of perturbed random walks. Theory Stoch. Process. 21(37)(1), 12–16 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  21. Kabanov, Yu., Pergamenshchikov, S.: In the insurance business risky investments are dangerous: the case of negative risk sums. Finance Stoch. 20, 355–379 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kalashnikov, V., Norberg, R.: Power tailed ruin probabilities in the presence of risky investments. Stoch. Process. Appl. 98, 211–228 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)

    Article  MathSciNet  Google Scholar 

  24. Klüppelberg, C., Kyprianou, A.E., Maller, R.A.: Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14, 1766–1801 (2004)

    Article  MathSciNet  Google Scholar 

  25. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance, 1st edn. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  26. Marinelli, C., Röckner, M.: On maximal inequalities for purely discontinuous martingales in infinite dimensions. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics, vol. 2123, pp. 293–315. Springer, Berlin (2014)

    Chapter  Google Scholar 

  27. Novikov, A.A.: On discontinuous martingales. Theory Probab. Appl. 20, 11–26 (1975)

    Article  MathSciNet  Google Scholar 

  28. Nyrhinen, H.: On the ruin probabilities in a general economic environment. Stoch. Process. Appl. 83, 319–330 (1999)

    Article  MathSciNet  Google Scholar 

  29. Nyrhinen, H.: Finite and infinite time ruin probabilities in a stochastic economic environment. Stoch. Process. Appl. 92, 265–285 (2001)

    Article  MathSciNet  Google Scholar 

  30. Paulsen, J.: Risk theory in a stochastic economic environment. Stoch. Process. Appl. 46, 327–361 (1993)

    Article  MathSciNet  Google Scholar 

  31. Paulsen, J.: Sharp conditions for certain ruin in a risk process with stochastic return on investments. Stoch. Process. Appl. 75, 135–148 (1998)

    Article  MathSciNet  Google Scholar 

  32. Paulsen, J.: On Cramér-like asymptotics for risk processes with stochastic return on investments. Ann. Appl. Probab. 12, 1247–1260 (2002)

    Article  MathSciNet  Google Scholar 

  33. Paulsen, J., Gjessing, H.K.: Ruin theory with stochastic return on investments. Adv. Appl. Probab. 29, 965–985 (1997)

    Article  MathSciNet  Google Scholar 

  34. Pergamenshchikov, S., Zeitouni, O.: Ruin probability in the presence of risky investments. Stoch. Process. Appl. 116, 267–278 (2006). Erratum to: Ruin probability in the presence of risky investments 119, 305–306 (2009)

    Article  MathSciNet  Google Scholar 

  35. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  36. Saxén, T.: On the probability of ruin in the collective risk theory for insurance enterprises with only negative risk sums. Scand. Actuar. J. 1948, 199–228 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by grant \(n^{\circ }\) 14.A12.31.0007 of the Government of the Russian Federation. The second author is partially supported by the Russian Federal Professor program (project \(n^{\circ }\) 1.472.2016/1.4) and the research project \(n^{\circ }\) 2.3208.2017/4.6 of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kabanov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Tails of solutions of distributional equations

Appendix A: Tails of solutions of distributional equations

1.1 A.1 Kesten–Goldie theorem

Here we present a short account of needed results on distributional equations (random equations in the terminology of [15]) of the form

$$ Y_{\infty } \stackrel{d}{=}Q+M Y_{\infty },\qquad Y_{\infty } \mbox{ independent of } (M,Q), $$
(A.1)

where \((M,Q)\) is an \({{\mathbb{R}}}^{2}\)-valued random variable such that \(M>0\) and \(\mathbf{P}[M\neq 1]>0\) and \(\stackrel{d}{=}\) is equality in law. This is a symbolic notation which means that we are given, in fact, a two-dimensional distribution ℒ on \((0,\infty )\times {\mathbb{R}}\) not concentrated on \(\{1\}\times {\mathbb{R}}\), and the problem is to find a probability space with random variables \(Y_{\infty } \) and \((M,Q)\) on it such that \(Y_{\infty }\) and \((M,Q)\) are independent, \(\mathcal{L}(M,Q)= \mathcal{L}\) and \(\mathcal{L}(Y_{\infty })= \mathcal{L}(Q+M Y _{\infty })\). Uniqueness in this problem means uniqueness of the distribution of \(Y_{\infty } \).

In the sequel, \((M_{j},Q_{j})\) form an i.i.d. sequence whose generic term \((M,Q)\) has the distribution ℒ and \(Z_{j}:=M_{1}\cdots M_{j}\), \(Z_{n}^{*}:=\sup _{j\le n}Z_{j}\).

If there is \(p>0\) such that \(\mathbf{E}[ M^{p}]<1\) and \(\mathbf{E}[ |Q|^{p}]< \infty \), then the solution \(Y_{\infty }\) of (A.1) can be easily realised on the probability space \((\Omega ,\mathcal{F},\mathbf{P})\) where the sequence \((M_{j},Q_{j})\) is defined; in fact, we can take the limit in \(L^{p}\) of the series \(\sum _{j\ge 0}Z_{j-1}Q_{j}\), see the beginning of the proof of Proposition 5.1.

The following classical result from renewal theory is the Kesten–Goldie theorem; see [15, Theorem 4.1].

Theorem A.1

Suppose that\((M,Q)\)is such that the distribution of\(\ln M\)is non-arithmetic and, for some\(\beta >0\),

$$\begin{aligned} {\mathbf{E}}[M^{\beta }]=1, \qquad {\mathbf{E}}[M^{\beta }(\ln M)^{+}]< \infty , \qquad {\mathbf{E}}[|Q|^{\beta }]< \infty . \end{aligned}$$
(A.2)

Then

$$\begin{aligned} \lim _{u\to \infty } u^{\beta }{\mathbf{P}}[Y_{\infty } >u] =&C_{+}< \infty , \\ \lim _{u\to \infty } u^{\beta }{\mathbf{P}}[Y_{\infty } < -u] =&C_{-}< \infty , \end{aligned}$$

where\(C_{+}+C_{-}>0\).

Theorem A.1 leaves open the question when the constant \(C_{+}\) is strictly positive. The expression

$$ C_{+}=\frac{\mathbf{E}[((Q+MY_{\infty } )^{+})^{\beta }- ((MY_{\infty } )^{+})^{\beta }]}{\beta {\mathbf{E}}[M^{\beta }\ln M] } $$
(A.3)

given in [15] and involving the unknown distribution of \(Y_{\infty }\) is not helpful. How to check whether the right-hand side of this formula is strictly positive? Recently, Guivarc’h and Le Page [18] showed for the above case where the distribution of \(\ln M\) is non-arithmetic that \(C_{+}>0\) if and only if \(Y_{\infty } \) is unbounded from above; see also Buraczewski and Damek [9] for simpler arguments. Of course, this criterion is not a result formulated in terms of the given data; it involves a property of the unknown distribution of \(Y_{\infty }\), namely that the support is unbounded. But this property can be checked in the model considered in the present paper.

The remaining part of the appendix is a compendium of facts needed to cover also the arithmetic case.

1.2 A.2 Grincevic̆ius theorem

The theorem below is a simplified version of [17, Theorem 2(b)], but with a slightly weaker assumption on \(Q\), namely \(\mathbf{E}[|Q|^{\beta }]<\infty \), as used in our study. For the reader’s convenience, we give a complete proof after recalling some concepts and facts from renewal theory.

Theorem A.2

Suppose that (A.2) holds and the distribution of\(\ln M\)is concentrated on the lattice\({{\mathbb{Z}}d}=\{0,\pm d, \pm 2d,\dots \}\), where\(d>0\). Then

$$ \limsup _{u\to \infty } u^{\beta }{\mathbf{P}}[Y_{\infty } >u]< \infty . $$

We consider the convolution-type linear operator which is well defined for all positive as well as for (Lebesgue-) integrable functions by the formula

$$ \check{\psi }(x)=: \int ^{x}_{-\infty } e^{-(x-y)} \psi (y) d y. $$

Clearly, the functions \(\psi \) and \(\check{\psi }\) are simultaneously integrable or not and

$$ \int _{{\mathbb{R}}}\check{\psi }(x)d x= \int _{{\mathbb{R}}}\psi (x)d x. $$

Suppose that \(\psi \ge 0\) is integrable. Then \(\check{\psi }(x+\delta )\ge e^{-\delta }\check{\psi }(x)\) for any \(\delta >0\) and

$$ \delta \inf _{x\in [j\delta , (j+1)\delta ]} \check{\psi }(x)\ge \delta e^{-\delta } \check{\psi }(j\delta )\ge e^{-2\delta } \int _{(j-1)\delta }^{j\delta }\check{\psi }(x)\,dx, $$

implying that

$$ \underline{U}(\check{\psi },\delta ):=\delta \sum _{j\in {\mathbb{Z}}} \inf _{x\in [j\delta , (j+1)\delta ]} \check{\psi }(x)\ge e^{-2\delta }\int _{{\mathbb{R}}}\check{\psi }(x)\,dx. $$

Similarly,

$$ \bar{U}(\check{\psi },\delta ):=\delta \sum _{j\in {\mathbb{Z}}} \sup _{x\in [j\delta , (j+1)\delta ]} \check{\psi }(x)\le e^{2\delta } \int _{{\mathbb{R}}}\check{\psi }(x)\,dx. $$

Thus \(\bar{U}(\check{\psi },\delta )<\infty \) and \(\bar{U}( \check{\psi },\delta )- \underline{U}(\check{\psi },\delta ) \to 0\) as \(\delta \to \infty \). These two properties mean by definition that the function \(\check{\psi }\) is directly Riemann-integrable. Arguing for the positive and negative parts, we obtain that if \(\psi \) is integrable, then \(\check{\psi }\) is directly Riemann-integrable.

We use in the sequel the following renewal theorem (see [19, Proposition 2.1]) for the random walk \(S _{n}:=\sum _{i=1}^{n}\xi _{i}\) on a lattice.

Proposition A.3

Let\(\xi _{i}\)be i.i.d. random variables taking values in the lattice\({\mathbb{Z}}d\), \(d>0\), and having finite expectation\(m:=\mathbf{E}[ \xi _{i}]>0\). Let\(F:{\mathbb{R}}\to {\mathbb{R}}\)be a measurable function. If\(x\in {\mathbb{R}}\)is such that\(\sum _{j\in {\mathbb{Z}}}|F(x+jd)|< \infty \), then

$$ \lim _{n\to \infty }{\mathbf{E}}\bigg[ \sum _{k\ge 0}F(x+nd-S_{k}) \bigg]=\frac{d}{m} \sum _{j\in {\mathbb{Z}}}F(x+jd). $$

Proof of Theorem A.2

Let the solution of (A.1) be realised on some probability space \((\Omega ,\mathcal{F},\mathbf{P})\). We use the notation \((M,Q)\) instead of \((M_{1},Q_{1})\) and as usual define the tail function \(\bar{G}(u):=\mathbf{P}[Y_{\infty }> u]\). Set \(g(x):=e^{\beta x} \bar{G}(e^{x})\). Since \(Y_{\infty }\) and \(M\) are independent, we have \(\mathbf{P}[MY_{\infty }>e^{x}]=\mathbf{E}[ \bar{G}(e^{x-\ln M})]\). Introducing the new probability measure \(\tilde{\mathbf{P}}:=M^{\beta } {\mathbf{P}}\) and noting that

$$ e^{\beta x}{\mathbf{P}}[MY_{\infty }>e^{x}] =\mathbf{E}[M^{\beta }e ^{\beta (x-\ln M)} \bar{G}(e^{x-\ln M})]= \tilde{\mathbf{E}}[g(x- \ln M)], $$

we obtain the identity (called renewal equation)

$$ g(x)=D(x)+\tilde{\mathbf{E}}[g(x-\ln M)], $$
(A.4)

where \(D(x):=e^{\beta x}(\mathbf{P}[Y_{\infty } >e^{x}]-\mathbf{P}[MY _{\infty }>e^{x}])\). The Jensen inequality for the convex function \(x\mapsto x\ln x \) implies that \(\tilde{\mathbf{E}}[\ln M]=\mathbf{E}[M ^{\beta }\ln M]>0\) and hence \(\tilde{\mathbf{E}}[|\ln M|]<\infty \). Let us check that the function \(x\mapsto D(x)\) is integrable. To this end, we note that for any random variables \(\xi ,\eta \),

$$ \big|{\mathbf{P}}[\xi >s]-\mathbf{P}[\eta >s]\big|\le {\mathbf{P}}[ \eta ^{+}\le s< \xi ^{+}]+\mathbf{P}[\xi ^{+}\le s< \eta ^{+}]. $$

Using the Fubini theorem, we obtain that

$$\begin{aligned} \int _{0}^{\infty }{\mathbf{P}}[\eta ^{+}\le s< \xi ^{+}]s^{\beta -1}\,ds =& \mathbf{E}\bigg[ I_{\{\eta _{+}< \xi _{+}\}}\int _{\eta ^{+}}^{\xi ^{+}} s ^{\beta -1}\,ds\bigg] \\ =&\frac{1}{\beta }{\mathbf{E}}\big[\big((\xi ^{+})^{\beta }-(\eta ^{+})^{ \beta }\big)^{+}\big]. \end{aligned}$$

Applying the above bound and identity with \(\xi :=Q+MY_{\infty } \stackrel{d}{=}Y_{\infty }\) and \(\eta :=M Y_{\infty }\), we get that

$$ \int _{{\mathbb{R}}} \vert D(x)\vert d x=\int _{0}^{\infty }\big|{\mathbf{P}}[ \xi >s]-\mathbf{P}[\eta >s]\big|s^{\beta -1}\,ds\le \frac{1}{\beta } {\mathbf{E}}\left [\big\vert (\xi ^{+})^{\beta }-(\eta ^{+})^{\beta } \big\vert \right ], $$

and it remains to verify that

$$ {\mathbf{E}}\big[\big|\big((Q+\eta )^{+}\big)^{\beta }-(\eta ^{+})^{ \beta }\big|\big] < \infty $$
(A.5)

when \(\mathbf{E}[\vert Q\vert ^{\beta }]<\infty \). But \(|((Q+\eta )^{+})^{ \beta }-(\eta ^{+})^{\beta }|=\zeta _{1}+\zeta _{2}\) with positive summands

$$\begin{aligned} \zeta _{1} :=&I_{\{-Q< \eta \le 0\}}(Q+\eta )^{\beta }+I_{\{0< \eta \le -Q\}}\eta ^{\beta }\le |Q|^{\beta }, \\ \zeta _{2} :=&I_{\{Q+\eta >0, \eta >0\}}|(Q+\eta )^{\beta }-\eta ^{ \beta }|. \end{aligned}$$

If \(\beta \le 1\), the random variable \(\zeta _{2}\) is also dominated by the random variable \(|Q|^{\beta }\). If \(\beta >1\), the inequality \(|x^{\beta }-y^{\beta }|\le \beta |x-y|(x\vee y)^{\beta -1}\) for \(x,y\ge 0\) combined with the inequality \((|a|+|b|)^{\beta -1}\le 2^{( \beta -2)^{+}} (|a|^{\beta -1}+|b|^{\beta -1} )\) leads to the estimate

$$ \zeta _{2}\le 2^{(\beta -2)^{+}}\beta |Q| (|\eta |^{\beta -1}+|Q|^{ \beta -1}). $$

Using the independence of \((M,Q)\) and \(Y_{\infty }\), the Hölder inequality and taking into account that \(\mathbf{E}[M^{\beta }]=1\) and \(\mathbf{E}[| Y_{\infty }|^{p}]<\infty \) for \(p\in [0,\beta )\), we get that

$$ \mathbf{E}[|Q||\eta |^{\beta -1} ]= \mathbf{E}[|Q|M^{\beta -1} ] {\mathbf{E}}[| Y_{\infty }|^{\beta -1} ] \le (\mathbf{E}[|Q|^{\beta }])^{1/ \beta } {\mathbf{E}}[|Y_{\infty }|^{\beta -1} ] < \infty . $$

Thus (A.5) holds. The integrability of \(D\) allows us to transform (A.4) into the equality

$$ \check{g}(x)=\check{D}(x)+\tilde{\mathbf{E}}[\check{g}(x-\ln M)]. $$

Iterating, we obtain that

$$ \check{g}(x)=\sum _{n= 0}^{N-1}\tilde{\mathbf{E}}[\check{D}(x-{S}_{n})]+ \tilde{\mathbf{E}}[\check{g}(x-{S}_{N})], $$
(A.6)

where \(S_{n}:=\sum _{i=1}^{n}\xi _{i}\) for \(n\ge 1\) and \((\xi _{i})\) is a sequence of independent random variables on \((\Omega ,\mathcal{F}, \tilde{\mathbf{P}})\), independent of \(Y_{\infty }\), such that \(\mathcal{L}(\xi _{i},\tilde{\mathbf{P}})=\mathcal{L}(\ln M, \tilde{\mathbf{P}})\). In particular, \(\tilde{\mathbf{E}}[e^{-\beta \xi _{i}}]=1\).

By the strong law of large numbers, we have \(S_{N}/N\to \tilde{\mathbf{E}}[\ln M]>0\)\(\tilde{\mathbf{P}}\)-a.s. as \(N\to \infty \) and therefore \(y-\ln S_{N}\to -\infty \)\(\tilde{\mathbf{P}}\)-a.s. for every \(y\). Since \(\tilde{\mathbf{E}}[e ^{-\beta S_{N}}]=1\), we have by dominated convergence that

$$ \tilde{\mathbf{E}}[g(y-{S}_{N})]=\tilde{\mathbf{E}}[e^{\beta (y-S_{N})} \bar{G}(e^{y-S_{N}})]\longrightarrow 0. $$

It follows that the remainder term \(\mathbf{E}[\check{g}(x-{S}_{N})]\) in (A.6) tends to zero so that

$$ \check{g}(x)=\sum _{k\ge 0}\tilde{\mathbf{E}}[\check{D}(x-{S}_{k})]. $$

Using Proposition A.3 (with \(F=\check{D}\)), we obtain that for any \(x>0\),

$$ \lim _{n\to \infty }\check{g}(x+d n)= \frac{d}{\tilde{\mathbf{E}}[ \ln M]}\sum _{j\in {\mathbb{Z}}} \check{D}(x+jd) \le \bar{U}(\check{D},d) < \infty . $$

Replacing in the integral below the function \(\bar{G}(e^{y})\) by its maximal value \(\bar{G}(e^{x})\), we get

$$ \check{g}(x):=\int ^{x}_{-\infty } e^{-(x-y)}e^{\beta y} \bar{G}(e^{y}) d y \ge \frac{1}{\beta +1}g(x) $$

and therefore

$$ \limsup _{u\to \infty } u^{\beta }{\mathbf{P}}[Y_{\infty }> u]= \limsup _{x\to \infty } g(x) \le (\beta +1) \limsup _{x\to \infty } \check{g}(x)< \infty . $$

Theorem A.2 is proved. □

1.3 A.3 Buraczewski–Damek approach

The following result, usually formulated in terms of the supremum of the random walk \(S_{n}:=\sum _{i=1}^{n}{\ln M_{i}}\), is well known (see e.g. Kesten [23, Theorem A] for a much more general setting).

Proposition A.4

If\(M\)satisfies (A.2), then

$$ \liminf _{u\to \infty }u^{\beta } {\mathbf{P}}[Z^{*}_{\infty }>u]>0. $$

Proof

Let \(F(x):= \mathbf{P}[\ln M\le x]\), \(\bar{F}(x):=1-F(x)\) and \(S_{n}:=\sum _{i=1}^{n}{\xi _{i}}\), where \(\xi _{i}:=\ln M_{i}\). The function \(\bar{H}(x):= \mathbf{P}[ \sup _{n\in {\mathbb{N}}} S_{n}>x]\) admits the representation

Putting \(Z(x):=e^{\beta x}\bar{H}(x)\), \(z(x):=e^{\beta x}\bar{F}(x)\) and \(\tilde{\mathbf{P}}:=e^{\beta \xi _{1}} {\mathbf{P}}\), we obtain from here that

$$ Z(x)=z(x)+ \tilde{\mathbf{E}}[Z(x-\xi _{1})I_{\{\xi _{1}\le x\}}]. $$

The same arguments as were used in deriving (A.6) lead to the representation

$$ Z(x)=\tilde{\mathbf{E}}\bigg[\sum _{k\ge 0}z(x-S_{k})I_{\{S_{k}\le x\}} \bigg]. $$

The function \(\hat{z}(x):=z(x)I_{\{x\ge 0\}}\) is directly Riemann-integrable. Indeed, for \(j\ge 0\), we have that

$$ \sup _{x\in [j\delta , (j+1)\delta ]} z(x)\le e^{\beta (j+1)\delta } \bar{F}(j\delta )\le e^{2\beta \delta }\int ^{j\delta }_{(j-1)\delta } e^{\beta v} \bar{F}(v)\,d v $$

and therefore

$$ \bar{U}(\hat{z},\delta )=\delta z(0)+\delta \sum _{j\ge 0} \sup _{x\in [j\delta , (j+1)\delta ]} z(x)\le \delta z(0)+ e^{2\beta \delta }\int _{-\delta }^{\infty }e^{\beta v} \bar{F}(v)\,d v. $$

In the same spirit, we get

$$ \inf _{x\in [j\delta , (j+1)\delta ]} z(x)\ge e^{\beta j\delta } \bar{F}\big((j+1)\delta \big)\ge e^{-2\beta \delta }\int ^{(j+2)\delta }_{(j+1)\delta } e^{\beta v} \bar{F}(v)\,d v $$

and

$$ \underline{U}(\hat{z},\delta )=\delta \sum _{j\ge 0} \sup _{x\in [j\delta , (j+1)\delta ]} z(x)\ge e^{-2\beta \delta } \int _{\delta }^{\infty }e^{\beta v} \bar{F}(v)\,d v. $$

Taking into account that

$$ \int _{{\mathbb{R}}}e^{\beta v} \bar{F}(v)\,d v = \frac{1}{\beta } {\mathbf{E}}[e ^{\beta \xi _{1}}] =\frac{1}{\beta }< \infty , $$

we get from here that \(\bar{U}(\hat{z},\delta )<\infty \) and \(\bar{U}(\hat{z},\delta )-\underline{U}(\hat{z},\delta )\to 0\) as \(\delta \to 0\). Using renewal theory, we obtain that if the law of \(\xi \) is non-arithmetic,

$$ \lim _{x\to \infty } e^{\beta x}\bar{H}(x)=\frac{1}{\tilde{\mathbf{E}}[ \xi ]} \int ^{\infty }_{0} z(v)\,dv; $$
(A.7)

see e.g. [13, Chap. XI, 9]. If the law of \(\xi \) is arithmetic with step \(d>0\), then according to Proposition A.3, for any \(x>0\), we have

$$ \lim _{n\to \infty } e^{\beta (x+nd)}\bar{H}(x+nd)=\frac{d}{ \tilde{\mathbf{E}}[\xi ]}\sum _{j\in {\mathbb{Z}}}z(x+jd) I_{\{x+jd \ge 0\}}. $$
(A.8)

The equalities (A.7) and (A.8) imply the statement. □

The proof of the result below, formulated in a form to cover our needs, follows the same lines as in Lemma 2.6 of the Buraczewski–Damek paper [9] with minor changes to include also the arithmetic case.

Theorem A.5

Suppose that (A.2) holds. If the support of the distribution of\(Y_{\infty } \)is unbounded from above, then

$$ \liminf _{u\to \infty } u^{\beta } {\mathbf{P}}[Y_{\infty }>u]>0. $$

Proof

Let

$$ \bar{Y}_{n}:=-\sum _{j=1}^{n} Q_{j}^{-} Z_{j-1}, \qquad Y_{n,\infty }:=\sum ^{\infty }_{j=n+1} Q_{j} \prod ^{j-1}_{\ell =n+1} M_{\ell } $$

and \(Z^{*}_{n}:=\sup _{j\le n}Z_{j}\). Theorems A.1 and A.2 imply that \(\mathbf{P}[\bar{Y}_{\infty } <-u]\le C _{1}u^{-\beta }\) with \(C_{1}>0\). On the other hand, by Proposition A.4, \(\mathbf{P}[Z^{*}_{\infty } >u]\ge C_{2}u^{-\beta }\) with \(C_{2}>0\). Of course, in both cases the inequalities hold when \(u\) is sufficiently large. Put \(U_{n}:=\{Z_{n}>u, \bar{Y}_{n}> -Cu\}\), where \(C^{\beta }:=4C_{1}/C_{2}\). The process \(\bar{Y}\) decreases. Therefore, we have the inclusion \(\{Z_{n}>u\}\subseteq \{\bar{Y}_{ \infty }\le -Cu \}\cup U_{n}\). It follows that for sufficiently large \(u>0\), we have

$$\begin{aligned} (3/4)C_{2}u^{-\beta }\le {\mathbf{P}}[Z^{*}_{\infty }>u]=\mathbf{P} \bigg[\bigcup _{n\in {\mathbb{N}}} \{Z_{n}>u\}\bigg] \le & \mathbf{P}[ \bar{Y}_{\infty }\le -Cu]+\mathbf{P}\bigg[\bigcup _{n\in {\mathbb{N}}} U_{n}\bigg] \\ \le & 2C_{1}C^{-\beta } u^{-\beta }+\mathbf{P}\bigg[ \bigcup _{n\in {\mathbb{N}}} U_{n}\bigg] \end{aligned}$$

so that \(\mathbf{P}[\bigcup _{n\in {\mathbb{N}}} U_{n}]\ge (1/4)C_{2}u ^{-\beta }\). Since \(\bar{Y}_{n}+Z_{n}Y_{n,\infty }\le Y_{n}+Z _{n}Y_{n,\infty }=Y_{\infty }\), we have that

$$ \{Y_{n,\infty }>C+1\}\cap U_{n}\subseteq \{\bar{Y}_{n}+Z_{n}Y_{n, \infty }>u\}\cap U_{n}\subseteq \{Y_{\infty }>u\}\cap U_{n}. $$

Note that \(\mathbf{P}[Y_{\infty }>C+1]=\mathbf{P}[Y_{n,\infty }>C+1]\) because \(\mathcal{L}(Y_{n,\infty }) =\mathcal{L}(Y_{\infty })\). Using the independence of \(Y_{n,\infty }\) and the sets \(W_{n}:=U_{n}\cap ( \bigcup _{k=1}^{n-1}U_{k})^{c}\) forming a disjoint partition of \(\bigcup _{n\in {\mathbb{N}}}U_{n}\), we get that

$$\begin{aligned} {\mathbf{P}}[Y_{\infty }>C+1]{\mathbf{P}}\bigg[\bigcup _{n\in {\mathbb{N}}} W_{n}\bigg] =&\sum _{n}{\mathbf{P}}[\{Y_{n,\infty }>C+1\}\cap W_{n}] \\ \le & \sum _{n}{\mathbf{P}}[\{Y_{\infty }>u\}\cap W_{n}] \le {\mathbf{P}}[Y _{\infty }>u]. \end{aligned}$$

Thus \(\mathbf{P}[Y_{\infty }>u]\ge (1/4)bC_{2}u^{-\beta }\), where \(b:=\mathbf{P}[Y_{\infty }>C+1]>0\) by the assumption that the support of \(\mathcal{L}(Y_{\infty })\) is unbounded from above. The obtained asymptotic bound implies that \(C_{+}>0\). □

Summarising the above results, we get for the function \(\bar{G}(u)= \mathbf{P}[Y_{\infty }>u]\) the following asymptotic properties when \(u\to \infty \).

Theorem A.6

Suppose that (A.2) holds. Then\(\limsup _{u \to \infty } u^{ \beta }\bar{G}(u)<\infty \). If\(Y_{\infty }\)is unbounded from above, then\(\liminf _{u \to \infty } u^{\beta }\bar{G}(u)>0\), and in the case where\(\mathcal{L}(\ln M)\)is non-arithmetic, \(\bar{G}(u)\sim C_{+}u ^{-\beta }\)with\(C_{+}>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanov, Y., Pergamenshchikov, S. Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process. Finance Stoch 24, 39–69 (2020). https://doi.org/10.1007/s00780-019-00413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00413-3

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation