Skip to main content
Log in

Invariant measure and large time dynamics of the cubic Klein–Gordon equation in 3D

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this paper we construct an invariant probability measure concentrated on \(H^2(K)\times H^1(K)\) for a general cubic Klein–Gordon equation (including the case of the wave equation). Here K represents both the 3-dimensional torus or a bounded domain with smooth boundary in \({\mathbb {R}}^3\). That allows to deduce some corollaries on the long time behaviour of the flow of the equation in a probabilistic sense. We also establish qualitative properties of the constructed measure. This work extends the fluctuation–dissipation-limit approach to PDEs having only one (coercive) conservation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When K represents a bounded domain, we shall need usual boundary conditions that are presented below.

  2. Let us mention the paper by Burq and Tzvetkov [5] introducing new approach to study probabilistic wellposedness which does not use an invariance property. Also, Colliander and Oh [7] have introduced another probabilistic approach to prove wellposedness results on low regularity spaces, this approach does not require invariance.

  3. Excepted cases where the PDE enjoys many high order conservation laws. However, the fluctuation–dissipation method can bypass the high regularity condition on the conservation laws by increasing the order of the damping operator.

  4. Notice that this kind of decompositon appears in litterature of stochastic PDEs (see e.g. [14]) and of dispersive PDEs (see e.g. [5] for the context of cubic wave equation).

References

  1. Bourgain, J., Bulut, A.: Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball. J. Funct. Anal. 266(4), 2319–2340 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)

    Article  MATH  Google Scholar 

  3. Burq, N., Tzvetkov, N.: Invariant measure for a three dimensional nonlinear wave equation. Int. Math. Res. Not. IMRN (22):Art. ID rnm108, 26 (2007)

  4. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent. Math. 173(3), 477–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burq, N., Tzvetkov, N.: Probabilistic well-posedness for the cubic wave equation. JEMS 16(1), 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9(5–6), 659–682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^2({\mathbb{T}})\). Duke Math. J. 161(3), 367–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coudène, Y.: Théorie ergodique et systèmes dynamiques. EDP Sciences, Les Ullis (2013)

    MATH  Google Scholar 

  9. de Suzzoni, A.-S.: Invariant measure for the Klein–Gordon equation in a non periodic setting. arXiv preprint arXiv:1403.2274 (2014)

  10. Koopman, B.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    Article  MATH  Google Scholar 

  11. Krengel, U.: Ergodic Theorems, vol. 59. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  12. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1991)

    MATH  Google Scholar 

  13. Kuksin, S., Shirikyan, A.: Randomly forced CGL equation: stationary measures and the inviscid limit. J. Phys. A Math. Gen. 37, 3805–3822 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  15. Kuksin, S.: The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys. 115(1–2), 469–492 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuksin, S.: On distribution of energy and vorticity for solutions of 2d Navier–Stokes equation with small viscosity. Commun. Math. Phys. 284(2), 407–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oh, T., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear schrödinger equation. Probability Theory and Related Fields, pp. 1–48 (2015)

  18. Shirikyan, A.: Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit. J. Math. Anal. Appl. 384(1), 130–137 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sy, M.: Invariant measure and long time behavior of regular solutions of the Benjamin-Ono equation. arXiv preprint arXiv:1601.05055 (2016)

  20. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  21. Tao, T.: Lectures on ergodic theory. https://terrytao.wordpress.com/category/teaching/254a-ergodic-theory/ (2008). Accessed 28 Nov 2018

  22. Thomann, L.: Invariant Gibbs measures for dispersives PDEs. http://www.iecl.univ-lorraine.fr/~Laurent.Thomann/Gibbs_Thomann_Maiori.pdf (2016). Accessed 28 Nov 2018

  23. Tzvetkov, N.: Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations. Forum Math. Sigma 3, e28, 35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, S.: Invariant Gibbs measure for 3D NLW in infinite volume. arXiv preprint arXiv:1405.3856 (2014)

Download references

Acknowledgements

I thank Armen Shirikyan, Nikolay Tzvetkov and Laurent Thomann for useful discussions and valuable remarks. I thank referees as well for remarks that have improved the text. This research was supported by the program DIM RDMath of FSMP and Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamadou Sy.

Global existence and uniqueness for the cubic KG equation in \({\mathscr {H}}^{1,0}(K)\)

Global existence and uniqueness for the cubic KG equation in \({\mathscr {H}}^{1,0}(K)\)

Set the space \(X:=X_T=C([0,T];{\mathscr {H}}^{1,0}(K))\) endowed with the norm \(\Vert .\Vert _X=\sup _{t\in [0,T]}\Vert .\Vert _{1,0}\).

Proposition A.1

For any \(y_0\) in \({\mathscr {H}}^{1,0}(K)\), there is a unique \(y:=[y_1,y_2]\) belonging to \(\cap _{T>0}X_T\) satisfying:

$$\begin{aligned} {\partial _t}y=Ay-[0,y_1^3], \end{aligned}$$
(A.1)

where \(Ay=[y_2,\ \Delta _0y_1]\) and \(y|_{t=0}=y_0\).

Sketch of the proof

The proof of the existence relies on the fixed point argument combined with the preservation of the energy

$$\begin{aligned} E(y)=\frac{1}{2}\Vert y\Vert _{1,0}^2+\frac{1}{4}\int y_1^4. \end{aligned}$$

We give it later. Now let us give the argument of the uniqueness, let x and y be two global in time solutions of (A.1), set \(w=x-y\). Then

$$\begin{aligned} {\partial _t}w=Aw-[0,w_1^3-3x_1y_1^2+3x_1^2y_1]. \end{aligned}$$

We multiply this equation by \({\partial _t}w\) and integrate over K to find

$$\begin{aligned} {\partial _t}E(w)\le C_1\Vert {\partial _t}w_2\Vert (\Vert x_1\Vert _{L^6}^3+\Vert y_1\Vert _{L^6}^3)\le C_2\sqrt{E(w)}(\Vert x_1\Vert _{L^6}^3+\Vert y_1\Vert _{L^6}^3). \end{aligned}$$

Then for any \(\epsilon >0\) and \(t\in [0,T]\)

$$\begin{aligned} {\partial _t}E(w(t))\le \frac{C_3}{\epsilon }E(w)\sup _{t\in [0,T]} (\Vert x_1\Vert _{L^6}^6+\Vert y_1\Vert _{L^6}^6)+\epsilon \end{aligned}$$

Using the fact that \(H^{1}\subset L^6\) and the Gronwall inequality, we see that for any \(T>0\) and the case \(w_0=0\), we have

$$\begin{aligned} \sup _{t\in [0,T]}E(w){\ \lesssim \ }\epsilon \ \ \ for\ \ all\ \ \epsilon >0 \end{aligned}$$

which finishes the proof of the uniqueness.

In order to prove the existence part, for a given \(y_0\in {\mathscr {H}}^{1,0}\) set the map

$$\begin{aligned} \phi _t y=e^{tA}y_0-\int _0^te^{-(t-s)A}[0,y_1^3]ds. \end{aligned}$$

It is not difficult to see that

$$\begin{aligned} \Vert \phi _t y\Vert _X&{\ \lesssim \ }\Vert y_0\Vert _{1,0}+T\Vert y\Vert _X^3;\\ \Vert \phi _t y-\phi _t x\Vert _X&{\ \lesssim \ }T\Vert y-x\Vert _X\sup _{t\in [0,T]}(\Vert x_1-y_1\Vert _1^6+\Vert x_1\Vert _1^6+\Vert y_1\Vert _1^6). \end{aligned}$$

Then for any \(R>0\), there is \(T_R>0\) such that \(\phi _t\) is a contraction on an appropriately chosen ball of \(X_{T_R}\). An iteration argument and the conservation of the energy finish the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sy, M. Invariant measure and large time dynamics of the cubic Klein–Gordon equation in 3D. Stoch PDE: Anal Comp 7, 379–416 (2019). https://doi.org/10.1007/s40072-018-0130-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0130-0

Keywords

Mathematics Subject Classification

Navigation