Skip to main content
Log in

Elevated Levels of Serum Exosomes in Patients with Major Depressive Disorder

  • CLINICAL NEUROCHEMISTRY
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Exosomes are small (30–100 nm) vesicles of the endocytic membrane that may be found in the endosome system of multivesicular organs and are released after fusion of multivesicular bodies with the plasma membrane. Exosomes function as carriers for specific loads and are stable in biological fluids; hence, exosomes are considered as potential biomarkers of different diseases. The degree of involvement and functional significance of exosomes in pathogenesis of depression have been poorly studied. The development of diagnostic methods for depressive disorders based on the analysis of circulating exosomes is very promising, despite the methodological complications related to their isolation and identification. The purpose of this study was to isolate exosomes from the blood serum of patients with major depressive disorder (MDD) and compare them with healthy volunteers using different methods of evaluation. The concentration of serum exosomes assessed using the methods of dynamic light scattering, nanoparticle tracking analysis, and the enzyme-linked immunoassay was statistically elevated in patients with MDD compared to healthy volunteers. The possible connection between the increased level of serum exosomes with the cell-mediated immune activation that is seen in depression is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Colombo, M., Raposo, G., and Théry, C., Annu. Rev. Cell. Dev. Biol, 2014, vol. 30, no. 1, pp. 255–289.

    Article  CAS  Google Scholar 

  2. Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., and Mathivanan, S., J. Mol. Biol., 2016, vol. 428, no. 4, pp. 688–692.

    Article  CAS  Google Scholar 

  3. Vlassov, A.V., Magdaleno, S., Setterquist, R., and Conrad, R., Biochim. Biophys. Acta, 2012, vol. 1820, pp. 940–948.

    Article  CAS  Google Scholar 

  4. Tkach, M. and Thery, C., Cell, 2016, vol. 164, no. 6, pp. 1226–1232.

    Article  CAS  Google Scholar 

  5. Baranyai, T., Herczeg, K., Onódi, Z., Voszka, I., Módos, K., Marton, N., Nagy, G., Mäger, I., Wood, M.J., El Andaloussi, S., Pálinkás, Z., Kumar, V., Nagy, P., Kittel, Á., Buzás, E.I., Ferdinandy, P., and Giricz, Z., PLoS One, 2015, vol. 21, pp. 10–12.

    Google Scholar 

  6. Muller, L., Hong, C.S., Stolz, D.B., Watkins, S.C., and Whitesid, T.L., J. Immunol. Methods, 2014, vol. 411, pp. 55–65.

    Article  CAS  Google Scholar 

  7. Candelario, K.M. and Steindler, D.A., Trends Mol. Med, 2014, vol. 20, no. 7, pp. 368–374.

    Article  CAS  Google Scholar 

  8. Holm, M.M., Kaiser, J., and Schwab, M.E., Trends Neurosci., 2018, vol. 41, no. 6, pp. 360–372.

    Article  CAS  Google Scholar 

  9. Janas, A.M., Sapoń, K., Janas, T., Stowell, M.H.B., and Janas, T., Biochim. Biophys. Acta.Biomembranes, 2016, vol. 1858, no. 6, pp. 1139–1151.

    Article  CAS  Google Scholar 

  10. Zappulli, V., Friis, K.P., Fitzpatrick, Z., Maguire, C.A., and Breakefield, X.O., J. Clin. Invest., 2016, vol. 126, no. 4, pp. 1198–1207.

    Article  Google Scholar 

  11. Gold, P.W., Machado-Vieira, R., and Pavlatou, M.G., Neural. Plasticity, 2015, vol. 2015, p. 581976.

  12. Januar, V., Saffery, R., and Ryan, J., Int. J. Epidemiol, 2015, vol. 44, pp. 1364–1387.

    Article  Google Scholar 

  13. Gururajan, A., Clarke, G., Dinan, T.G., and Cryan, J.F., Neurosci. Biobehav. Rev., 2016, vol. 64, pp. 101–133.

    Article  CAS  Google Scholar 

  14. Strawbridge, R., Young, A.H., and Cleare, A.J., Neuropsychiatr. Dis. Treat, 2017, vol. 13, pp. 1245–1262.

    Article  CAS  Google Scholar 

  15. Hacimusalar, Y. and Esel, E., Noro. Psikiyatr. Ars, 2018, vol. 55, no. 3, pp. 280–290.

    PubMed  PubMed Central  Google Scholar 

  16. Dean, J. and Keshavan, M., Asian. J. Psychiatry, 2017, vol. 27, pp. 101–111.

    Article  Google Scholar 

  17. Dickens, A.M., Tovar-Y-Romo, L.B., Yoo, S.W.W., Trout, A.L., Bae, M., Kanmogne, M., and Haughey, N.J., Sci. Signal, 2017, vol. 10, no. 473, eaai7696.

  18. Brites, D. and Fernandes, A., Front. Cell. Neurosci., 2015, vol. 9, pp. 1–20.

    Article  Google Scholar 

  19. Camkurt, M.A., Acar, Ş., Coşkun, S., Güneş, M., Gunes, S., Yilmaz, M.F., and Tamer, L., J. Psychiatr. Res., 2015, vol. 69, pp. 67–71.

    Article  Google Scholar 

  20. Zhang, Y., Zhao, Y., Tian, C., Wang, J., Li, W., and Zhong, C., Eur. J. Psychiat., 2018, vol. 32, pp. 105–112.

    Article  CAS  Google Scholar 

  21. Tavakolizadeh, J.L., Roshanaei, K., Salmaninejad, A., Yari, R., Nahand, J.S., Sarkarizi, H.K., Mousavi, S.M., Salarinia, R., Rahmati, M., Mousavi, S.F., Mokhtari, R., and Mirzaei, H.J., Cell. Biochem., 2018, vol. 119, no. 5, pp. 3783–3797.

    Article  CAS  Google Scholar 

  22. Narahari, A., Hussain, M., and Sreeram, V., Innov. Clin. Neurosci., 2017, vol. 14, nos. 1-2, pp. 53–55.

    PubMed  PubMed Central  Google Scholar 

  23. Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., and Erbaugh, J., Arch. Gen. Psychiat., 1961, vol. 4, pp. 561–571.

    Article  CAS  Google Scholar 

  24. Tarabrina, N.V., Praktikum po psikhologii posttravmaticheskogo stressa (Practical Course on Psychology of Posttraumatic Stress), St. Petersburg: Piter, 2001.

  25. Spielberger, C.D., Gorsuch, R.L., Lushene, R., Vagg, P.R., and Jacobs, G.A., Manual for the State-Trait Anxiety Inventory, Palo Alto, CA: Consulting Psychologists Press, 1983.

    Google Scholar 

  26. Hanin, Y. and Spielberger, C.D., Series in Clinical & Community Psychology:Stress & Anxiety, 1983, vol. 2, pp. 15–26.

    Google Scholar 

  27. Hamilton, M., J. Neurol. Neurosurg. Psychiatry, 1960, vol. 23, pp. 56–62.

    Article  CAS  Google Scholar 

  28. Witwer, K.W., Buzas, E.I., Bemis, L.T., Bora, A., Lasser, C., Lotvall, J., Nolte-t Hoen, E.N., Piper, M.G., Sivaraman, S., Skog, J., Thery, C., Wauben, M.H., and Hochberg, F., J. Extracell. Vesicles, 2013, vol. 2, no. 1. https://doi.org/10.3402/jev.v2i0.20360

    Article  Google Scholar 

  29. Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., la Franquesa, M., Beyer, K., and Borràs F.E., Sci. Rep, 2016, p. 6: 33641.

  30. Krady, J.K., Lin, H.W., Liberto, C.M., Basu, A., Kremlev, S.G., and Levison, S.W., J. Neurosci. Res., 2008, vol. 86, no. 7, pp. 1538–1547.

    Article  CAS  Google Scholar 

  31. Baek, J.Y., Yeong, Jeong J., In, Kim So-Yoon Won, K., Cheul Chung, Y., Han Nam, J., Ju Cho, E., Tae-Beom Ahn, T.-B., Bok, E., Won-Ho, Shin, and Byung Kwan Jin, Int., J. Mol. Sci, 2018, vol. 19, no. 11, pp. 35–43.

    Article  Google Scholar 

  32. Lin, H.W., Jain, M.R., Li, H., and Levison, S.W., J. Neuroinflammation, 2009, vol. 6, pp. 6–7.

    Article  Google Scholar 

  33. Yirmiya, R., Rimmerman, N., and Reshef, R., Trends Neurosci., 2015, vol. 38, no. 10, pp. 637–658.

    Article  CAS  Google Scholar 

  34. Kuwano, N., Kato, T.A., Mitsuhashi, M., Sato-Kasai, M., Shimokawa, N., Hayakawa, K., Ohgidani, M., Sagata, N., Kubo, H., Sakurai, T., and Kanba, S., Affect. Disord., 2018, vol. 240, pp. 88–98.

    Article  CAS  Google Scholar 

  35. Gupta, A. and Pulliam, L., J. Neuroinflammation, 2014, vol. 11, p. 68.

    Article  Google Scholar 

  36. Réus, G.Z., Fries, G.R., Stertz, L., Badawy, M., Passos, I.C., Barichello, T., Kapczinski, F., and Quevedo, J., Neuroscience, 2015, vol. 300, pp. 141–154.

    Article  Google Scholar 

  37. Serafini, G., Rihmer, Z., and Amore, M., Neuroimmunol. Neuroinflamm., 2015, vol. 2, pp. 127–130.

    Article  CAS  Google Scholar 

  38. Tsilioni, I. and Theoharides, T.C., J. Neuroinflammation, 2018, vol. 15, no. 1, p. 239.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors appreciate the support of the representatives of Malvern Panalytical Ltd in the Russian Federation S.L. Vasin and E.O. Duplyakin for their help in the development of optic devices for registration of exosomes.

Funding

The study was supported by the Russian Foundation for Basic Research, grant no. 17-04-01079-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Druzhkova.

Ethics declarations

Conflict of interest. None of the authors had conflict of interest to declare.

Ethical approval. All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.A., Druzhkova, T.A., Nikolaev, R.V. et al. Elevated Levels of Serum Exosomes in Patients with Major Depressive Disorder. Neurochem. J. 13, 385–390 (2019). https://doi.org/10.1134/S1819712419040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419040044

Keywords:

Navigation