Skip to main content
Log in

A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Talinopsis frutescens (Anacampserotaceae, a family that is close related to Cactaceae) is a succulent species endemic to North America. The aim of this study was to explore, using Ecological Niche Modeling (ENM), changes in potential distribution ranges considering different climate scenarios: past conditions during the Last Inter Glacial (LIG) and the Last Glacial Maximum (LGM), the present and projections for 2070 (RCP 2.6 to 8.5). A pattern of contraction is observed during the LIG, which agrees with other studies focused in species from arid environments. This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario. All future projections show the same contraction and fragmentation patterns, resulting in three discontinuous areas: the northern part of the Chihuahuan Desert, the southern-central part of the Mexican Plateau, and the smallest one in the Tehuacán-Cuicatlán Valley. Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angulo D F, Amarilla L D, Anton A M, et al. 2017. Colonization in North American arid lands: the journey of agarito (Berberis trifoliolata) revealed by multilocus molecular data and packrat midden fossil remains. PLoS ONE, 12(2): e0168933.

    Google Scholar 

  • Ballesteros-Barrera C. 2008. Effect of global climate change on the distribution of Chihuahuan Desert species. PhD Dissertation. México: National Autonomous University of Mexico. (in Spanish)

    Google Scholar 

  • Cevallos-Ferriz S R S, González-Torres E A, Calvillo-Canadell L. 2012. Paleobotanical and geological perspective of the biodiversity in Mexico. Acta Botanica Mexicana, 100: 317–350. (in Spanish)

    Google Scholar 

  • Dávila P, del Coro Arizmendi M, Valiente-Banuet A, et al. 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodiversity and Conservation, 11(3): 421–442.

    Google Scholar 

  • Dávila, P, Téllez O, Lira R. 2013. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosystems, 147(2): 376–386.

    Google Scholar 

  • De-Nova J A, Sánchez-Reyes L L, Eguiarte L E, et al. 2018. Recent radiation and dispersal of an ancient lineage: The case of Fouquieria (Fouquiericeae, Ericales) in North American deserts. Molecular Phylogenetics and Evolution, 126: 92–104.

    Google Scholar 

  • Duran K L, Lowrey T K, Parmenter R R, et al. 2005. Genetic diversity in Chihuahuan Desert populations of creosotebush (Zygophyllaceae: Larrea tridentata). American Journal of Botany, 92(4): 722–729.

    Google Scholar 

  • Ferrari L, López-Martínez M, Aguirre-Díaz G, et al. 1999. Space-time patterns of Cenozoic arc volcanism in central Mexico: from the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27(4): 303–306.

    Google Scholar 

  • Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community climate system model version 4. Journal of Climate, 24(19): 4973–4991.

    Google Scholar 

  • Gómez-Tuena A, Orozco-Esquivel M T, Ferrari L. 2007. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geological Society of America, 422: 129–181.

    Google Scholar 

  • Hafner D J, Riddle B R. 2011. Boundaries and barriers of North American warm deserts: an evolutionary perspective. In: Upchurch P, McGowan A J, Slater C S C. Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time. Boca Raton: Taylor and Francis Group, 74–101.

    Google Scholar 

  • Hernández-Ledesma P, Berendsohn W G, Borsch T, et al. 2015. A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia, 45(3): 281–383.

    Google Scholar 

  • Hijmans R J, Cameron S E, Parra J L, et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965–1978.

    Google Scholar 

  • Hoyt C. 2002. The Chihuahuan Desert: diversity at risk. Endangered Species Bulletin, 27(2): 16–17.

    Google Scholar 

  • Hunter K L, Betancourt J L, Riddle B R, et al. 2001. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata. Global Ecology and Biogeography, 10(5): 521–533.

    Google Scholar 

  • IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996.

    Google Scholar 

  • Kelly A E, Goulden M L. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33): 11823–11826.

    Google Scholar 

  • Kiger R W. 2003. Talinopsis. In: Flora of North America Editorial Committee, Flora of North America North of Mexico, Vol. 4. Magnoliophyta: Caryophyllidae, Pt. 1. New York: Oxford University Press, 501–502.

    Google Scholar 

  • Levins R. 1968. Evolution in Changing Environments. Princeton: Princeton University Press, 132.

    Google Scholar 

  • Loera I, Ickert-Bond S M, Sosa V. 2017. Pleistocene refugia in the Chihuahuan Desert: the phylogeographic and demographic history of the gymnosperm Ephedra compacta. Journal of Biogeography, 44(12): 2706–2716.

    Google Scholar 

  • Metcalfe S E. 2006. Late quaternary environments of the northern deserts and Central Transvolcanic Belt of Mexico. Annals of the Missouri Botanical Garden, 93(2): 258–273.

    Google Scholar 

  • Miguel-Vázquez M I, Ocampo G. 2017. Knowing more about Talinopsis frutescens (arroyo fameflower) a North American endemic succulent species. Cactus and Succulent Journal, 89(2): 88–91.

    Google Scholar 

  • Morafka D J. 1977. A Biogeographical Analysis of the Chihuahuan Desert through its Herpetofauna. The Hague: Dr. W. Junk B.V., 321.

    Google Scholar 

  • Morrone J J. 2005. Toward a synthesis of Mexican biogeography. Mexican Journal of Biodiversity, 76(2): 207–252. (in Spanish)

    Google Scholar 

  • Nakazato T, Warren D L, Moyle L C. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97(4): 680–693.

    Google Scholar 

  • Nason J D, Hamrick J L, Fleming T H. 2002. Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran Desert columnar cactus. Evolution 56(11): 2214–2226.

    Google Scholar 

  • Ocampo G, Columbus J T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. American Journal of Botany, 97(11): 1827–1847.

    Google Scholar 

  • Ocampo G. 2011. Anacampserotaceae. Flora del Valle de Tehuacán-Cuicatlán, 84: 1–12.

    Google Scholar 

  • Otto-Bliesner B L, Marshall S J, Overpeck J T, et al. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768): 1751–1753.

    Google Scholar 

  • Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box: an open-source release of Maxent. Ecography, 40(7): 887–893.

    Google Scholar 

  • Rolando A. 1990. On niche breadth and related concepts. Italian Journal of Zoology, 57(2): 145–148.

    Google Scholar 

  • Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V. 2012. Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Organisms Diversity and Evolution, 12:133–143.

    Google Scholar 

  • Rzedowski G C. 2005. Talinopsis. In: Rzedowski G C, Rzedowski J. Phanerogamic Flora of the Valley of Mexico. Pátzcuaro: Institute of Ecology, A. C., National Commission for the Knowledge and Use of Biodiversity, 147. (in Spanish)

    Google Scholar 

  • Rzodowski J. 2006. Vegetation of Mexico (1st ed.). México: National Commission for the Knowledge and Use of Biodiversity. 504. (in Spanish)

    Google Scholar 

  • Samour-Nieva O R. 2012. Nurse effect of Larrea tridentata and its impact on the diversity of perennial plant species in the Potosino plateau region, Mexico. Msc Thesis. Mexico: Potosino Institute of Scientific and Technological Research, A.C. (in Spanish)

    Google Scholar 

  • Scheinvar E, Gámez N, Castellanos-Morales G, et al. 2017. Neogene and Pleistocene history of Agave lechuguilla in the Chihuahuan Desert. Journal of Biogeography, 44(2): 322–334.

    Google Scholar 

  • Shreve F. 1942. The desert vegetation of North America. The Botanical Review, 8: 195–246.

    Google Scholar 

  • Sosa V, De-Nova J A, Vásquez-Cruz M. 2018. Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism. Journal of Systematics and Evolution, 56 (5): 523–536.

    Google Scholar 

  • Valiente-Banuet A, Solis-Rojas L, Dávila P, et al. 2009. Guide of the vegetation of the Tehuacán-Cuicatlán Valley (1st ed.). Mexico: National Autonomous University of Mexico, 208. (in Spanish)

    Google Scholar 

  • Vásquez-Cruz M, Sosa V. 2016. New insights on the origin of the woody flora of the Chihuahuan Desert: The case of Lindleya, American Journal of Botany, 103(9): 1694–1707.

    Google Scholar 

  • Walker J F, Yang Y, Feng T, et al. 2018. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. American Journal of Botany, 105(3): 446–462.

    Google Scholar 

  • Warren D L, Glor R E, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11): 2868–2883.

    Google Scholar 

  • Wilson J S, Pitts J P. 2010. Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography: Earth and Environment, 34(4): 419–441.

    Google Scholar 

Download references

Acknowledgements

This study was partially funded by the National Council of Science and Technology, Mexico (PhD scholarship 436041) and the Cactus and Succulent Society of America grant, both provided to the first author. The research was supported by the Educational Professional Development Program (#UAA-PTC-169) granted to the corresponding author by the Public Education Department and the Autonomous University of Aguascalientes, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Ocampo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel-Vázquez, M.I., López De Olmos R, Y.S. & Ocampo, G. A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae. J. Arid Land 12, 104–114 (2020). https://doi.org/10.1007/s40333-019-0019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-019-0019-4

Keywords

Navigation