Skip to main content

Advertisement

Log in

Trajectory tracking using artificial neural network for stable human-like gait with upper body motion

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a trajectory generation algorithm for robots which can walk like human with movable foot and active toe. The proposed algorithm allows smooth transition between walking phases namely, single and double support phases. A neural network approach is used for solving inverse kinematics so that the biped robot follows the ankle and hip trajectories to walk. Zero moment point (ZMP) stability is ensured by taking into account the upper body movements along with the planned motion trajectories. Here, we analyze the effect of lateral upper body motion on ZMP stability. Different types of trajectories for upper body are generated, and the one which ensured the most stable locomotion is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Vukobratovic M, Borovac B (2004) Zero-moment point-Thirty five years of its life. Int J Humanoid Robot 1:157–173

    Article  Google Scholar 

  2. McGeer T (1990) Passive walking with knees. In: Proceedings of the IEEE-ICRA, pp. 1640–1645

  3. Sarkar A, Dutta A (2014) 8-DoF biped robot with compliant-links. Robot Auton Syst 63:57. https://doi.org/10.1016/j.robot.2014.09.014

    Article  Google Scholar 

  4. Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent ASIMO : system overview and integration. In: IEEE-international workshop on intelligent robots and systems, pp 2478–2483

  5. Fujita M (2000) Digital creatures for future entertainment robotics. In: Proceedings of the IEEE-ICRA, pp 801–806

  6. Kaneko K, Kanehiro F, Kajita S, Yokoyama K, Akachi K, Kawasaki T, Ota S, Isozumi T (2002) Design of prototype humanoid robotics platform for HRP. In: IEEE/RSJ-international conference on intelligent robots and systems

  7. Panwar R, Sukavanam N (2017) Stable polynomial gait of a biped robot with Toe joint. Proceedings of the UPCON, Mathura, India, pp 382–387

  8. Aroche ON, Cozatl ER, Jimenez FC (2011) Kinematic analysis and computation of ZMP for a 12-internal-DOF biped robot. In: 13th World congress in mechanism and machine science. Guanajuato, Mexico, pp 19–25

  9. Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K (2001) Planning walking patterns for a biped robot. IEEE Trans Robot Autom 17(3):280–289

    Article  Google Scholar 

  10. Cuevas E, Zaldivar D, Cisneros MP, Ortegon MR (2010) Polynomial trajectory algorithm for a biped robot. Int J Robot Autom 25(4):294–303

    Google Scholar 

  11. Xiaoguang Z, Ruyi H (2015) Research on humanoid robot slope gait planning. Open Autom Control Syst J 7:1002–1009

    Article  Google Scholar 

  12. Liu J, Urbann O (2016) Bipedal walking with dynamic balance that involves three-dimensional upper body motion. Robot Auton Syst 77:39–54

    Article  Google Scholar 

  13. Shin HK, Kim BK (2014) Energy-efficient gait planning and control for biped robots utilizing the allowable ZMP region. IEEE Trans Robot 30(4):986–993

    Article  Google Scholar 

  14. Nishiwaki K, Kagami S, Kuniyoshi Y, Inaba M, Inoue H (2002) Toe joints that enhance bipedal and fullbody motion of humanoid robots. In: Proceedings of the IEEE-ICRA, pp 3105–3110

  15. Kumar P, Yoon J, Kim GS (2007) Hybrid toe and heel joints for biped/humanoid robots for natural gait. In: International conference on control, automation and systems, pp 2687–2692

  16. Wang T, Chevallereau C, Tlalolini D (2014) Stable walking control of a 3D biped robot with foot rotation. Robotica 32:551–570

    Article  Google Scholar 

  17. Erbatur K, Kurt O (2006 Nov) Humanoid walking robot control with natural ZMP references. In: Proceedings of the IECON, France

  18. Vadakkepat P, Sim NB, Goswami D (2014) Soccer playing humanoid robots: Processing architecture, gait generation and vision system. Robot Auton Syst 57:776–785

    Article  Google Scholar 

  19. Zhu H, Luo M, Li J (2018) Optimization based gait planning and control for biped robots utilizing the optimal allowable ZMP variation region. Ind Robot Int J 45:469. https://doi.org/10.1108/IR-01-2018-0011

    Article  Google Scholar 

  20. Stasse O, Verrelst B, Vanderborght B, Yokoi K (2009) Strategies for humanoid robots to dynamically walk over large obstacles. IEEE Trans Robot 25(4):960

    Article  Google Scholar 

  21. Li T, Ceccarelli M, Luo M, Laribi MA, Zeghloul S (2014) An experimental analysis of overcoming obstacle in human walking. J Bionic Eng 11:497–505

    Article  Google Scholar 

  22. Lope J, Careaga RG, Zarraonandia T, Maravall D (2008) Inverse kinematics for humanoid robots using artificial neural networks. Int J Comput Commun Control 39:224–234

    Google Scholar 

  23. Husty ML, Pfurner M, Schrocker HP (2007) A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech Mach Theory 42:66–81

    Article  MathSciNet  Google Scholar 

  24. Almusawi AJ, Dulger LC, Kapucu S (2016) A new artificial neural network approach in solving inverse kinematics of robotic arm. Comput Intell Neurosci 2016:5720163

    Article  Google Scholar 

  25. Duka AV (2014) Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Proc Technol 12:20–27

    Article  Google Scholar 

  26. Takanishi A, Ishida M, Yamazaki Y, Kato I (1985) The realization of dynamic walking robot WL-10RD. In: Proceedings of the IEEE-ICRA, pp 459–466

  27. Park J (2003) Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots. Fuzzy Set Syst 134:189–203

    Article  MathSciNet  Google Scholar 

  28. Lim H, Ogura Y, Takanishi A (2007) Locomotion pattern generation and mechanisms of a new biped walking machine. Proc R Soc A 464:273–288

    Article  Google Scholar 

  29. Xu W et al (2011) An improved ZMP trajectory design for the biped robot BHR. In: Proceedings of the IEEE-ICRA, Shanghai, China, pp 569–574

Download references

Acknowledgements

Funding was provided by MHRD (Grant No. MHR-02-23-200-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Panwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, R., Sukavanam, N. Trajectory tracking using artificial neural network for stable human-like gait with upper body motion. Neural Comput & Applic 32, 2601–2619 (2020). https://doi.org/10.1007/s00521-018-3842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3842-1

Keywords

Navigation