Skip to main content
Log in

Plant DNA Barcodes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—The search for universal plant DNA barcodes has proved to be a big challenge. A single locus (or combination of several loci) that can be used for species identification has yet to be revealed, though the (rbcL + matK+ ITS) combination recommended in 2009 as the standard makes it possible to assign a species to the corresponding genus. The variability of some markers differs in different taxonomic groups and usually makes it possible to select the DNA barcode (sometimes even a mini-barcode) for a specific group, especially for applied tasks. Next-generation sequencing (NGS) methods make it possible to obtain a large number of extended DNA barcodes (sequences of complete chloroplast genomes and ribosomal genes), which allows the researcher to overcome the limitations of standard DNA barcodes. It is important that NGS technologies significantly enhance the possibility of the use of herbarium specimens. The search for plant DNA barcodes is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alves, T.L., Chauveau, O., Eggers, L., and De Souza-Chies, T.T., Species discrimination in Sisyrinchium (Iridaceae): assessment of DNA barcodes in a taxonomically challenging genus, Mol. Ecol. Res., 2014, vol. 14, pp. 324–333.

    Article  CAS  Google Scholar 

  2. Arca, M., Hinsinger, D.D., and Cruaud, C., Deciduous trees and the application of universal DNA barcodes: a case study on the circumpolar Fraxinus, PLoS One, 2012, vol. 7, p. e34089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakker, F.T., Lei, D., Yu, J., et al., Herbarium genomics: Plastome sequence assembly from a range of herbarium specimens using an iterative organelle genome assembly pipeline, Bot. J. Linn. Soc., 2016, vol. 117, pp. 33–43.

    Article  Google Scholar 

  4. Braukmann, T.W.A., Kuzmina, M.L., Sills, J., et al., Testing the efficacy of DNA barcodes for identifying the vascular plants of Canada, PLoS One, 2017, vol. 12, p. e0169515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burgess, K.S., Fazekas, A.J., Kesanakurti, P.R., et al., Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode, Methods Ecol. Evol., 2011, vol. 2, pp. 333–340.

    Article  Google Scholar 

  6. Chen, S., Yao, H., Han, J., et al., Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species, PLoS One, 2010, vol. 5, no. 1, p. e8613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chomicki, G. and Renner, S.S., Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics, New Phytol., 2015, vol. 205, pp. 526–532.

    Article  PubMed  Google Scholar 

  8. Christina, V.L.P. and Annamalai, A., Nucleotide based validation of Ocimum species by evaluating three candidate barcodes of the chloroplast region, Mol. Ecol. Resour., 2014, vol. 14, no. 1, pp. 60–68.

    Article  CAS  PubMed  Google Scholar 

  9. Coissac, E., Hollingsworth, P.M., Lavergne, S., and Taberlet, P., From barcodes to genomes: extending the concept of DNA barcoding, Mol. Ecol., 2016, vol. 25, pp. 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  10. Costion, C., Ford, A., Cross, H., et al., Plant DNA barcodes can accurately estimate species richness in poorly known flora, PLoS One, 2011, vol. 6, no. 11, p. e26841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Mattia, F., Bruni, I., Galimbert, A., et al., A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae, Food Res. Int., 2011, vol. 44, no. 3, pp. 693–702.

    Article  CAS  Google Scholar 

  12. Dong, W., Liu, H., Xu, C., et al., A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs, BMC Genet., 2014, vol. 15, p. 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, W., Xu, C., Li, C., et al., ycf1, the most promising plastid DNA barcode of land plants, Sci. Rep., 2015, vol. 5, no. 8348.

  14. Escapa, I.H. and Catalano, S.A., Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils, Int. J. Plant Sci., 2013, vol. 174, pp. 1153–1170.

    Article  Google Scholar 

  15. Federici, S., Galimberti, A., Bartolucci, F., et al., DNA barcoding to analyze taxonomically complex groups in plants: the case of Thymus (Lamiaceae), Bot. J. Linn. Soc., 2013, vol. 171, pp. 687–699.

    Article  Google Scholar 

  16. Feliner, G.N. and Rosselló, J.A., Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants, Mol. Phylogenet. Evol., 2007, vol. 44, no. 2, pp. 911–919.

    Article  CAS  Google Scholar 

  17. Gao, T., Yao, H., Song, J., et al., Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family, BMC Evol. Biol., 2010, vol. 10, p. e324.

    Article  CAS  Google Scholar 

  18. Gaudeul, M., Gardner, M.F., Thomas, P., et al., Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species, BMC Evol. Biol., 2014, vol. 14, pp. 171.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han, J.-P., Shi, L.-C., Chen, X.-C., and Lin, Y.-L., Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae, J. Syst. Evol., 2012, vol. 50, no. 3, pp. 227–234.

    Article  Google Scholar 

  20. Hassel, K., Segreto, R., and Ekrem, T., Restricted variation in plant barcoding markers limits identification in closely related bryophyte species, Mol. Ecol. Resour., 2013, vol. 13, no. 6, pp. 1047–1057.

    CAS  PubMed  Google Scholar 

  21. Hollingsworth, P.M., Refining the DNA barcode for land plants, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19451–19452.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hollingsworth, P.M., Forrest, L.L., Spouge, J.L., et al., A DNA barcode for land plants, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12794–12797.

    Article  PubMed Central  Google Scholar 

  23. Hollingsworth, P.M., Li, D.-Z., van der Bank, M., and Twyford, A.D., Telling plant species apart with DNA: from barcodes to genomes, Philos. Trans. R. Soc., B, 2016, vol. 371, p. e20150338.

  24. Huan, H.V., Trang, H.M., and Toan, N.V., Identification of DNA barcode sequence and genetic relationship among some species of magnolia family, Asian J. Plant Sci., 2018, vol. 17, no. 1, pp. 56–64.

    Article  CAS  Google Scholar 

  25. Ivanova, N.V., Kuzmina, M.L., Braukmann, T.W.A., et al., Authentication of herbal supplements using next generation sequencing, PLoS One, 2016, vol. 11, no. 5, p. e0156426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeanson, M.L., Labat, J.-N., and Little, D.P., DNA barcoding: a new tool for palm taxonomists? Ann. Bot., 2011, vol. 108, no. 8, pp. 1445–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kane, N., Sveinsson, S., Dempewolf, H., et al., Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA, Am. J. Bot., 2012, vol. 99, no. 2, pp. 320–329.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, W.J., Moon, B.C., Yang, S., et al., Rapid authentication of the herbal medicine plant species Aralia continentalis Kitag. and Angelica biserrata C.Q. Yuan and R.H. Shan using ITS2 sequences and multiplex-SCAR markers, Molecules, 2016, vol. 21, no. 3, p. 270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kranitz, M., Biffin, E., Clark, A., et al., Evolutionary diversification of New Caledonian Araucaria, PLoS One, 2014, vol. 9, p. e110308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuzmina, M.L., Braukman, T.W.A., Fazecas, A.J., et al., Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada, Appl. Plant Sci., 2017, vol. 5, no. 12, art. ID 1700079.

    Article  Google Scholar 

  31. Li, D.Z., Gao, L.M., Li, H.T., et al., Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19641–19646.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, Y., Feng, Y., Wang, X.-Y., et al., Failure of DNA barcoding in discriminating Calligonum species, Nord. J. Bot., 2014, vol. 32, no. 4, pp. 511–517.

    Article  Google Scholar 

  33. Liang, X.H. and Wu, Y.X., Identification of Kalidium species (Chenopodiaceae) by DNA barcoding, Sci. Cold Arid Reg., 2017, vol. 9, no. 1, pp. 89–96.

    Google Scholar 

  34. Little, D.P., A DNA mini-barcode for land plants, Mol. Ecol. Resour., 2014, vol. 14, no. 3, pp. 437–446.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J., Yan, H.F., and Ge, X.J., The use of DNA barcoding on recently diverged species in the genus Gentiana (Gentianaceae) in China, PLoS One, 2016, vol. 11, no. 4, p. e0153008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Z.F., Ci, X.Q., Li, L., et al., DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China, PLoS One, 2017, vol. 124, no. 4, p. e0175788.

    Article  CAS  Google Scholar 

  37. Michel, C.-I., Meyer, R.S., Taveras, Y., and Molina, J., The nuclear internal transcribed spacer (ITS2) as a practical plant DNA barcode for herbal medicines, J. Appl. Res. Med. Arom. Plants, 2016, vol. 3, no. 3, pp. 94–100.

    Google Scholar 

  38. Mishra, P., Kumar, A., Rodrigues, V., et al., Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae), PeerJ, 2016, vol. 4, p. e2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naciri, Y., Caetano, S., and Salamin, N., Plant DNA barcodes and the influence of gene flow, Mol. Ecol. Resour., 2012, vol. 12, pp. 575–580.

    Article  PubMed  Google Scholar 

  40. Nicholls, J.A., Pennington, R.T., Koenen, E.J., et al., Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae), Front. Plant Sci., 2015, vol. 6, p. 710.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nock, C.J., Waters, D.L., Edwards, M.A., et al., Chloroplast genome sequences from total DNA for plant identification, Plant Biotechnol. J., 2011, vol. 9, no. 3, pp. 328–333.

    Article  CAS  PubMed  Google Scholar 

  42. Ojeda, D.I., Santos-Guerra, A., Oliva-Tejers, F., et al., DNA barcodes successfully identified Micronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa, AoB Plants, 2014, vol. 6. https://doi.org/10.1093/aobpla/plu050

  43. Parmentier, I., Dumini, J., Kuzmina, M., et al., How effective are DNA barcodes in the identification of African rainforest trees? PLoS One, 2013, vol. 8, no. 4, p. e54921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Percy, D.M., Argus, G.W., Cronk, Q.C., et al., Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep? Mol. Ecol., 2014, vol. 19, pp. 4737–4756.

    Article  CAS  Google Scholar 

  45. Petit, R.J. and Excoffier, L., Gene flow and species delimitation, Trends Ecol. Evol., 2009, vol. 24, pp. 386–393.

    Article  PubMed  Google Scholar 

  46. Pillon, Y., Johansen, J., Sakishima, T., et al., Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations, BMC Evol. Biol., 2013, vol. 13, no. 1, p. 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren, B.-Q., Xiang, X.-G., and Chen, Z.-D., Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers, Mol. Ecol. Resour., 2010, vol. 10, pp. 594–605.

    Article  CAS  PubMed  Google Scholar 

  48. Roy, S., Tyagi, A., Shukla, V., et al., Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species, PLoS One, 2010, vol. 5, no. 10, p. e13674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruhsam, M., Rai, H.S., Mathews, S., et al., Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol., 2015, vol. 15, no. 5, pp. 1067–1078.

    Article  CAS  Google Scholar 

  50. Särkinen, T., Staats, M., Richardson, J.E., et al., How to open the treasure chest? Optimizing DNA extraction from herbarium specimens, PLoS One, 2012, vol. 7, no. 8, p. e43808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seberg, O. and Petersen, G., How many loci does it take to DNA barcode a Crocus? PLoS One, 2009, vol. 4, no. 2, p. e4598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shneyer, V.S., DNA barcoding is a new approach in comparative genomics of plants, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1267–1278.

    Article  CAS  Google Scholar 

  53. Song, Y., Wang, S., Ding, Y., et al., Chloroplast genomic resource of Paris for species discrimination, Sci. Rep., 2017, vol. 7, p. 3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stech, M., Veldman, S., Larraín, J., et al., Molecular species delimitation in the Racomitrium canescens complex (Grimmiaceae) and implications for DNA barcoding of species complexes in mosses, PLoS One, 2013, vol. 8, no. 1, p. e53134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Straub, S.C., Parks, M., Weitemier, K., et al., Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics, Am. J. Bot., 2012, vol. 99, pp. 349–364.

    Article  CAS  PubMed  Google Scholar 

  56. Stull, G.W., Moore, M.J., Mandala, V.S., et al., A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes, Appl. Plant Sci., 2013, vol. 1, no. 2, p. e1200497.

    Article  Google Scholar 

  57. Vivas, C.V., Moraes, R.C., Alves-Araujo, A., et al., DNA barcoding in Atlantic Forest plants: what is the best marker for Sapotaceae species identification? Gen. Mol. Biol., 2014, vol. 37, no. 4, pp. 662–670.

    Article  CAS  Google Scholar 

  58. Wang, X.-Y., Zheng, S.-H., Liu, Y., and Han, J.-P., ITS2, a better DNA barcode than ITS in identification of species in Artemisia L., Chin. Herb. Med., 2016, vol. 8, no. 4, pp. 352–358.

    Article  Google Scholar 

  59. Wu, F., Ma, J., Meng, Y., et al., Potential DNA barcodes for Melilotus species based on five single loci and their combinations, PLoS One, 2017, vol. 12, no. 9, p. e0182693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, H.-F., Hao, G., Hu, C.-M., and Ge, X.-J., DNA barcoding in closely related species: a case study of Primula L. sect. Proliferae Pax (Primulaceae) in China, J. Syst. Evol., 2011, vol. 49, no. 3, pp. 225–236.

    Article  Google Scholar 

  61. Yan, H.-F., Liu, Y.J., and Xie, X.F., DNA barcoding evaluation and its taxonomic implications in the species-rich genus Primula L. in China, PLoS One, 2015, vol. 10, no. 4, p. e0122903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, J., Vázquez, L., Chen, X., et al., Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus subgenus Quercus) and assessment of their utility as DNA barcodes, Front. Plant Sci., 2017, vol. 8, p. 816.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yao, P.-C., Gao, H.-Y., Wei, Y.-N., et al., Evaluating sampling strategy for DNA barcoding study of coastal and inland halotolerant Poaceae and Chenopodiaceae: a case study for increased sample size, PLoS One, 2017, vol. 12, no. 9, p. e0185311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zarrei, M., Talent, N., Kuzmina, M., et al., DNA barcodes from four loci provide poor resolution of taxonomic groups in the genus Crataegus, AoB Plants, 2015, vol. 7. https://doi.org/10.1093/aobpla/plv045

Download references

Funding

The study was performed in accordance with the Basic Research Program “Biodiversity of Natural Systems and Biological Resources of Russia” of the Russian Academy of Sciences (project no. АААА-А18-118020190240-8, “Genetic Polymorphism of Genera and Species in Cereals and Other Wild Angiosperms Revealed by a Comparative Study of Highly Variable Regions of Nuclear and Chloroplast Genomes”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Shneyer or A. V. Rodionov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shneyer, V.S., Rodionov, A.V. Plant DNA Barcodes. Biol Bull Rev 9, 295–300 (2019). https://doi.org/10.1134/S207908641904008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641904008X

Navigation