Skip to main content
Log in

Nest density, genetic structure, and triploid workers in exotic Bombus terrestris populations colonized Japan

Densité des nids, structure génétique et ouvrières triploïdes chez les populations de Bombus terrestris introduites au Japon

Nestdichte, genetische Struktur und triploide Arbeiterinnen bei eingeführten Bombus terrestris Populationen in Japan

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

A commercialized pollinator introduced from Europe, Bombus terrestris, has colonized Japan. We investigated nest density and genetic structure in two sites based on worker genotypes at 12 microsatellite loci. We confirmed that five workers were triploids using multilocus genotypes and flow cytometry, indicating that queens mated with diploid males and produced triploid workers. The inbreeding coefficient of diploid workers representing individual colonies was significantly positive (F IS = 0.048) in a site where triploids were found. Genetic diversity in the sites was as high as that in native regions in Europe, and genetic differentiation between the sites was low (F ST = 0.006). The maximum distance between sampling locations of full-sib worker pairs indicated that the radius of a foraging range was at least 782 m. The estimates of nest density were 31 and 89 km−2 in the two sites, suggesting that the nest density in a colonized region can be higher than that in the native regions.

Zusammenfassung

Die kommerziell aus Europa eingeführte Bestäuberart Bombus terrestris hat sich inzwischen über ganz Japan verbreitet und beeinflusst dadurch möglicherweise einheimische Bienenund Pflanzenarten. In den Verbreitungsgebieten scheint die genetische Diversität geringer zu sein als in ursprünglichen Regionen, da die Gründerpopulationen meist recht klein sind. Durch Inzucht in kleinen Gründerpopulationen entstehen diploide Männchen, die bei der Paarung triploide Individuen zeugen. Trotz der Inzucht und der verringerten genetischen Variabilität vergrößern wilde Populationen ihr Verbreitungsgebiet und kommen dann teilweise recht häufig vor. Wir untersuchten die Nestdichte und die genetische Struktur bestimmter Genotypen an zwei Untersuchungsstandorten in Nordjapan auf der Basis von 12 Mikrosatelliten-Loci von sammelnden Arbeiterinnen (Abb. 1). Wir bestätigten anhand von Multilocus-Genotypanalysen, dass fünf Arbeiterinnen triploid waren (Abb. 2); deren Königinnen hatten sich vermutlich mit diploiden Männchen verpaart und danach triploide Arbeiterinnen produziert. Die Ergebnisse lassen Inzucht vermuten. Folgerichtig war der Inzuchtkoeffizient von diploiden Arbeiterinnen aus Einzelvölkern signifikant positiv (F IS = 0, 048), wenn an den Standorten triploide Arbeiterinnen gefunden wurden (Tab. II). Die genetische Diversität an diesen Standorten war genauso hoch wie in den Ursprungsregionen in Europa und die genetische Differenzierung zwischen den Standorten war gering (F ST = 0, 006; Tab. II). Diese Ergebnisse lassen vermuten, dass diese Wildpopulationen von verschiedenen Linien kommerziell eingeführter Völker abstammen und dass es durch Migration zur Vermischung verschiedener Populationen kam. Die maximale Distanz zwischen Sammelorten von Vollgeschwister-Paaren zeigt, dass der Sammelradius mindestens 782 m beträgt (Abb. 3). Die geschätzte Nestdichte von 31 und 89 km−2 an zwei verschiedenen Standorten (Tab. I) zeigt, dass die Dichte im neuen Verbreitungsgebiet höher sein kann als in den Ursprungsregionen. Unsere Befunde lassen vermuten, dass reduzierte Paarungsmöglichkeiten für die Inzucht in eingeschleppten B. terrestris-Populationen verantwortlich sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aron S., de Menten L., Van Bockstaele D.R., Blank S.M., Roisin Y. (2005) When hymenopteran males reinvented diploidy, Curr. Biol. 15, 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Ayabe T., Hoshiba H., Ono M. (2004) Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris, Chromosome Res. 12, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Buttermore R.E., Pomeroy N., Hobson W., Semmens T., Hart R. (1998) Assessment of the genetic base of Tasmanian bumble bees (Bombus terrestris) for development as pollination agents., J. Apic. Res. 37, 23–25.

    Google Scholar 

  • Chapman R.E., Bourke A.F.G. (2001) The influence of sociality on the conservation biology of social insects, Ecol. Lett. 4, 650–662.

    Article  Google Scholar 

  • Chapman R.E., Wang J., Bourke A.F.G. (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators, Mol. Ecol. 12, 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  • Cresswell J.E., Osborne J.L., Goulson D. (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees, Ecol. Entomol. 25, 249–255.

    Article  Google Scholar 

  • Darvill B., Knight M.E., Goulson D. (2004) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.

    Article  Google Scholar 

  • Darvill B., Ellis J.S., Lye G.C., Goulson D. (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae), Mol. Ecol. 15, 601–611.

    Article  PubMed  CAS  Google Scholar 

  • Duchateau M.J., Marien J. (1995) Sexual biology of haploid and diploid males in the bumble bee Bombus terrestris, Insectes Soc. 42, 255–266.

    Article  Google Scholar 

  • Duchateau M.J., Hoshiba H., Velthuis H.H.W. (1994) Diploid males in the bumble bee Bombus terrestris: Sex determination, sex alleles and viability, Entomol. Exp. Appl. 71, 263–269.

    Article  Google Scholar 

  • Ellis J.S., Knight M.E., Darvill B., Goulson D. (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae), Mol. Ecol. 15, 4375–4386.

    Article  PubMed  CAS  Google Scholar 

  • Estoup A., Scholl A., Pouvreau A., Solignac M. (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites, Mol. Ecol. 4, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Estoup A., Solignac M., Cornuet J.-M., Goudet J., Scholl A. (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe, Mol. Ecol. 5, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Funk C.R., Schmid-Hempel R., Schmid-Hempel P. (2006) Microsatellite loci for Bombus spp., Mol. Ecol. Notes 6, 83–86.

    Article  CAS  Google Scholar 

  • Goka K., Okabe K., Yoneda M. (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization, Popul. Ecol. 48, 285–291.

    Article  Google Scholar 

  • Goudet J. (2002) FSTAT: A program to estimate and test gene diversities and fixation indices (version 2.9) [online] http://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 12 January 2009).

  • Goulson D. (2003) Effects of introduced bees on native ecosystems, Annu. Rev. Ecol. Evol. Syst. 34, 1–26.

    Article  Google Scholar 

  • Goulson D., Stout J.C. (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae), Apidologie 32, 105–111.

    Article  Google Scholar 

  • Hingston A.B. (2005) Inbreeding in the introduced Bumblebee Bombus terrestris causes uncertainty in predictions of impacts on native ecosystems, Ecol. Manage. Restor. 6, 149–153.

    Article  Google Scholar 

  • Hingston A.B. (2006) Is the exotic bumblebee Bombus terrestris really invading Tasmanian native vegetation? J. Insect Conserv. 10, 289–293.

    Article  Google Scholar 

  • Hingston A.B., Herrmann W., Jordan G.J. (2006) Reproductive success of a colony of the introduced bumblebee Bombus terrestris (L.) (Hymenoptera: Apidae) in a Tasmanian National Park, Aust. J. Entomol. 45, 137–141.

    Article  Google Scholar 

  • Hoffman J.I., Amos W. (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion, Mol. Ecol. 14, 599–612.

    Article  PubMed  CAS  Google Scholar 

  • Inari N., Nagamitsu T., Kenta T., Goka K., Hiura T. (2005) Spatial and temporal pattern of introduced Bombus terrestris abundance in Hokkaido, Japan, and its potential impact on native bumblebees, Popul. Ecol. 47, 77–82.

    Article  Google Scholar 

  • Inoue M.N., Yokoyama J., Washitani I. (2007) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae), J. Insect Conserv. 12, 135–146

    Article  Google Scholar 

  • Keane R.M., Crawley M.J. (2002) Exotic plant invasions and the enemy release hypothesis, Trends Ecol. Evol. 17, 164–170.

    Article  Google Scholar 

  • Kenta T., Inari N., Nagamitsu T., Goka K., Hiura T. (2007) Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan, Biol. Conserv. 134, 298–309.

    Article  Google Scholar 

  • Knight M.E., Martin A.P., Bishop S., Osborne J.L., Hale R.J., Sanderson R.A., Goulson D. (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species, Mol. Ecol. 14, 1811–1820.

    Article  PubMed  CAS  Google Scholar 

  • Kunitake Y., Goka K. (2006) Environmental risk assessment and management decisions for introduced insects: Legal controls on Bombus terrestris by Invasive Alien Species Act, Jap. J. Plant Prot. 60, 196–197.

    Google Scholar 

  • Matsumura C., Yokoyama J., Washitani I. (2004) Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in southern Hokkaido, Japan, Global Environ Res. 8, 51–66.

    Google Scholar 

  • Nagamitsu T., Kenta T., Inari N., Goka K., Hiura T. (2007a) Foraging interactions between native and exotic bumblebees: Enclosure experiments using native flowering plants, J. Insect Conserv. 11, 123–130.

    Article  Google Scholar 

  • Nagamitsu T., Kenta T., Inari N., Kato E., Hiura T. (2007b) Abundance, body size, and morphology of bumblebees in an area where an exotic species, Bombus terrestris, has colonized in Japan, Ecol. Res. 22, 331–341.

    Article  Google Scholar 

  • Nakajima M., Matsumura C., Yokoyama J., Washitani I. (2004) Nesting in Bombus terrestris (Linnaeus) and foraging by B. terrestris workers from a B. hypocrita sapporoensis (Cockerell) nest in Mukawa-cho, Yufutsu-gun, Hokkaido, Japan, Jap. J. Conserv. Ecol. 9, 57–63.

    Google Scholar 

  • Nei M. (1987) Molecular Evolutionary Genetics, Columbia University Press, New York.

    Google Scholar 

  • Oldroyd B.P., Thexton E.G., Lawler S.H., Estoup A., Crozier R. (1995) Population demography of Australian feral bees (Apis mellifera), Oecologia 111, 381–387.

    Article  Google Scholar 

  • Osborne J.L., Clark S.J., Morris R.J., Williams I.H., Riley J.R., Smith A.D., Reynolds D.R., Edwards A.S. (1999) A Landscape-scale study of bumble bee foraging range and constancy, using harmonic radar, J. Appl. Ecol. 36, 519–533.

    Article  Google Scholar 

  • Piry S., Luikart G., Cornuet J.-M. (1999) BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data., J. Hered. 90, 502–503.

    Article  Google Scholar 

  • R Development Core Team (2006) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, [online] http://www.R-project.org/foundation (accessed on 12 January 2009).

    Google Scholar 

  • Roubik D.W. (1983) Experimental community studies: time-series tests of competition between African and Neotropical bees, Ecology 64, 971–978.

    Article  Google Scholar 

  • Schmid-Hempel P., Schmid-Hempel R., Brunner P., Seeman O., Allen G. (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck, Heredity 99, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel R., Schmid-Hempel P. (2000) Female mating frequencies in Bombus spp. from central Europe, Insectes Soc. 47, 36–41.

    Article  Google Scholar 

  • Walsh P., Metzger D., Higuchi R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, Biotechniques 10, 506–513.

    PubMed  CAS  Google Scholar 

  • Walther-Hellwig K., Frankl R. (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape, J. Appl. Entomol. 124, 299–306.

    Article  Google Scholar 

  • Wang J. (2004) Sibship reconstruction from genetic data with typing errors, Genetics 166, 1963–1979.

    Article  PubMed  Google Scholar 

  • Widmer A., Schmid-Hempel P. (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae), Mol. Ecol. 8, 387–398.

    Article  PubMed  Google Scholar 

  • Widmer A., Schmid-Hempel P., Estoup A., Scholl A. (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira, Heredity 81, 563–572.

    Article  Google Scholar 

  • Weir B.S., Cockerham C.C. (1984) Estimating F-statistics for the analysis of population structure, Evolution 38, 1358–1370.

    Article  Google Scholar 

  • Wright S. (1951) The genetical structure of populations, Ann. Eugen. 15, 323–354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyoshi Nagamitsu.

Additional information

Manuscript editor: Walter S. Sheppard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamitsu, T., Yamagishi, H. Nest density, genetic structure, and triploid workers in exotic Bombus terrestris populations colonized Japan. Apidologie 40, 429–440 (2009). https://doi.org/10.1051/apido/2009004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009004

Navigation