Skip to main content
Log in

Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

With more than 500 species, most of them occurring in the Neotropical region, the genus Passiflora is of key importance when one considers exploring biodiversity for food and medicinal purposes. Plants from the genus Passiflora produce fruits with economical importance, the passionfruits. Passionfruit breeding programs are leaving their infancy and molecular markers are increasingly being used to assist selection for desirable traits in novel passionfruit commercial varieties. However, the molecular and genetic basis of many of the selected characters affecting passionfruit production and quality cannot be studied in model species such as Arabidopsis thaliana, due to developmental particularities of Passiflora species. Therefore, in this review we comment on the development of genetic, genomic and transcriptomic tools that are recently becoming available for passionfruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu EF, Aragão FJ (2007) Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot 99:285–292. https://doi.org/10.1093/aob/mcl256

    Article  CAS  PubMed  Google Scholar 

  • Abreu PP, Magalhães-Souza M, Santos E, Pires M, Pires M, Almeida AA (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166:307–315. https://doi.org/10.1007/s10681-008-9835-x

    Article  Google Scholar 

  • Aizza LCB, Dornelas MC (2011) A genomic approach to study anthocyanin synthesis and flower pigmentation in passionflowers. J Nucleic Acids 2011:1–17

    Article  CAS  Google Scholar 

  • Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas LB, Kuhlemeier C (2016) Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol 26:3303–3312. https://doi.org/10.1016/j.cub.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  • Barros DR, Alfenas-Zerbini P, Beserra JE Jr, Antunes TF, Zerbini FM (2011) Comparative analysis of the genomes of two isolates of cowpea aphid-born mosaic virus (CABMB) obtained from different hosts. Arch Virol 156:1085–1091. https://doi.org/10.1007/s00705-011-0962-7

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RH, Dean C (2018) Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. J Exp Bot 68:5439–5452. https://doi.org/10.1093/jxb/erx270

    Article  CAS  Google Scholar 

  • Bowman JL (2000) Axial patterning in leaves and other lateral organs. Curr Opin Genet Dev 10:399–404

    Article  CAS  PubMed  Google Scholar 

  • Carneiro MS, Camargo LEA, Coelho ASG, Vencovsky R, Leite RP, Stenzel NM, Vieira MLC (2002) RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Deg.). Genome 35:670–678

    Article  Google Scholar 

  • Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha H, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, Vieira MLC (2017) The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: structural organization and phylogenomic studies in Malpighiales. Front Plant Sci 8:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavichioli JC, Meletti LMM, Narita N (2018) Aspectos da cultura do maracujazeiro no Brasil. http://www.todafruta.com.br/wp-content/uploads/2018/05/MARACUJA.pdf. Accessed 25 Sept 2018

  • Cazarin C (2013) Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: in vitro and in vivo study. Food Res Int 52:882–890

    Google Scholar 

  • Cazé ALR, Kriedt RA, Beheregaray LB, Bonatto S, Freitas LB (2012) Isolation and characterization of microsatellite markers for Passiflora contracta. Int J Mol Sci 13:11343–11348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira-Silva CBM, Santos ES, Souza AM, Mori GM, Oliveira EJ, Corrêa RX, Souza AP (2012) Development and characterization of microsatellite markers for the wild South American Passiflora cincinnata (Passifloraceae). Am J Bot 99:170–172. https://doi.org/10.3732/ajb.1100477

    Article  Google Scholar 

  • Cerqueira-Silva CBM, Jesus ON, Santos ESL, Corrêa RX, Souza AP (2014) Genetic breeding and diversity of the Genus Passiflora: progress and perspectives in molecular and genetic studies. Int J Mol Sci 15:14122–14152. https://doi.org/10.3390/ijms150814122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chayut N, Sobol S, Nave N, Samach A (2014) Shielding flowers developing under stress: translating theory to field application. Plants 3:304–323. https://doi.org/10.3390/plants3030304

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yu N, Yang S, Zhong B, Lan H (2018) Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents. Virol J 15:168. https://doi.org/10.1186/s12985-018-1084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Costa ZP, Munhoz CF, Vieira MLC (2017) Report on the development of putative functional SSR and SNP markers in passion fruits. BMC Res Notes 10:445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutri L, Dornelas MC (2012) PASSIOMA: exploring expressed sequence tags during flower development in Passiflora spp. Comp Funct Genomics 2012:1–11

    Article  CAS  Google Scholar 

  • Cutri L, Nave N, Ami MB, Chayut N, Samach A, Dornelas MC (2013) Evolutionary, genetic, environmental and hormonal-induced plasticity in the fate of organs arising from axillary meristems in Passiflora spp. Mech Dev 130:61–69

    Article  CAS  PubMed  Google Scholar 

  • Escobar LK (1989) A new subgenus and five new species in Passiflora (Passifloraceae) from South America. Ann Mis Bot Gard 76:877–885

    Article  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, MacDougal JM (2004) A new infrageneric classification of Passiflora. Passiflora 14:1–4

    Google Scholar 

  • Freitas JCO, Viana AP, Santos E, Paiva C, Silva F, Magalhães-Souza M (2016) Sour passion fruit breeding: strategy applied to individual selection in segregating population of Passiflora resistant to Cowpea aphid-born mosaic virus (CABMV). Sci Hortic 211:241–247. https://doi.org/10.1016/j.scienta.2016.09.002

    Article  Google Scholar 

  • Giovannini A, Dente F, Benedetti L, Nicoletti F, Braglia L, Gavazzi F, Mercuri A (2012) Interspecific hybridization in ornamental passion flowers. Acta Hortic 953:111–118. https://doi.org/10.17660/actahortic.2012.953.15

    Article  Google Scholar 

  • Goldenberg L, Feygenberg O, Samach A, Pesis E (2012) Ripening attributes of new passion fruit line featuring seasonal non-climacteric behavior. J Agric Food Chem 60:1810–1821. https://doi.org/10.1021/jf203313r

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JS, Souza SAM (2006) Fruta da Paixão: panorama econômico do maracujá no Brasil. Inf Econ 36:29–36

    Google Scholar 

  • Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31:138–150

    Article  Google Scholar 

  • Hemingway CA, Christensen AR, Malcomber ST (2011) B- and C-class gene expression during corona development of the blue passionflower (Passiflora caerulea, Passifloraceae). Am J Bot 98:923–934

    Article  CAS  PubMed  Google Scholar 

  • IBGE. Instituto Brasileiro de Geografia e Estatística (2017) Levantamento sistemático da produção agrícola V30: 1-81.ftp://ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/2017/lspa_201701.pdf. Accessed 25 Sept 2018

  • Killip EP (1938) The American species of Passifloraceae. Field Mus Nat Hist, Bot Ser 19:1–613

    Google Scholar 

  • Krosnick SE, Freudenstein JV (2005) Monophyly and floral character homology of old world Passiflora (Subgenus Decaloba, Supersection Disemma). Syst Bot 30:139–152

    Article  Google Scholar 

  • Lopes R, Lopes MT, Carneiro MS, Fde PM, Camargo LE, Vieira ML (2006) Linkage and mapping of resistance genes to Xanthomonas axonopodis pv. passiflorae in yellow passion fruit. Genome 49:17–29

    Article  CAS  PubMed  Google Scholar 

  • MacDougal JM (1994) Revision of Passiflora subgenus Decaloba section Pseudodysosmia (Passifloraceae). Syst Bot Monogr 41:1–46

    Article  Google Scholar 

  • Manders G, Otoni WC, d’Utra Vaz FB, Blackball NW, Power JB, Davey MR (1994) Transformation of passionfruit (Passiflora edulis fv flavicarpa Degener.) using Agrobacterium tumefaciens. Plant Cell Rep 13:697–702. https://doi.org/10.1007/BF00231627

    Article  CAS  PubMed  Google Scholar 

  • Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39. https://doi.org/10.1016/j.tplants.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Melo NF, Guerra M (2003) Variability of the 5S and rDNA sites in Passiflora L. with species with distinct base chromosome numbers. Ann Bot 92:309–316

    Article  CAS  PubMed  Google Scholar 

  • Melo NF, Cervi AC, Guerra M (2001) Kariology and citotaxonomy of the genus Passiflora L. Plant Syst Evol 226:68–84

    Google Scholar 

  • Menzel CM, Simpson DR, Winks CW (1987) Effect of temperature on growth, flowering and nutrient uptake of three passionfruit cultivars under low irradiance. Sci Hortic 31:259–268

    Article  Google Scholar 

  • Mita S, Kawamura S, Yamawaki K, Nakamura K, Hyodo H (1998) Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol 39:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Mizuno S, Sonoda M, Tamura Y, Eisho N, Suzuki H, Sato T, Oizumi T (2015) Chiba Tendril-Less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog. J Plant Res. https://doi.org/10.1007/s10265-015-0747-2

    Article  PubMed  Google Scholar 

  • Monteiro-Hara ACBA, Jadão AS, Mendes MBJ, Rezende JAM, Trevisan F, Mello APOA, Vieira MLC, Meletti LMM, Piedade SMS (2011) Genetic transformation of passionflower and evaluation of R1 and R2 generations for resistance to cowpea aphid borne mosaic virus. Plant Dis 95:1021–1025. https://doi.org/10.1094/PDIS-12-10-0873

    Article  CAS  PubMed  Google Scholar 

  • Munhoz CF, Santos AA, Arenhart RA, Santini L, Monteiro-vitorello CB, Vieira MLC (2015) Analysis of plant gene expression during passion fruit-Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Ann Appl Biol 167:135–155. https://doi.org/10.1111/aab.12215

    Article  CAS  Google Scholar 

  • Munhoz CF, Costa ZP, Cauz-Santos LA, Reátegui ACE, Rodde N, Cauet S, Dornelas MC, Leroy P, Varani AM, Bergès H, Vieira MLC (2018) A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Sci Rep 8:13024. https://doi.org/10.1038/s41598-018-31330-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza-Chies TT, Salzano FM, Freitas LB (2003) A first molecular phylogenetic analysis of Passiflora (Passifloracae). Am J Bot 90:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Muschner VC, Lemke APL, Vecchia M, Bonatto S, Salzano FM, Freitas LB (2006) Differential organellar inheritance in Passiflora’s (Passifloraceae) subgenera. Genetica 128:449–453

    Article  PubMed  Google Scholar 

  • Muschner VC, Zamberlan PM, Bonatto SL, Freitas LB (2012) Phylogeny, biogeography and divergence times in Passiflora (Passifloraceae). Genet Mol Biol 35:1036–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Nave N, Katz E, Chayut N, Gazit S, Samach A (2010) Flower development in the passion fruit Passiflora edulis requires a photoperiod-induced systemic graft-transmissible signal. Plant, Cell Environ 33:2065–2083. https://doi.org/10.1111/j.1365-3040.2010.02206.x

    Article  CAS  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Camargo LEA, Fungaro MHP, Vieira MLC (2005) Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Mol Ecol Notes 5:331–333

    Article  CAS  Google Scholar 

  • Oliveira EJ, Vieira MLC, Garcia AAF, Munhoz CEF, Margarido GRA, Consoli L, Matta FP, Moraes MC (2008) An integrated molecular map of yellow passion fruit based on simultaneous maximum-likelihood estimation of linkage and linkage phases. J Am Soc Hortic Sci 133:35–41

    Article  CAS  Google Scholar 

  • Padua JG, Oliveira EJ, Zucchi MI, Oliveira GCX, Camargo LEA, Vieira MLC (2005) Isolation and characterization of microsatellite markers from the sweet passion fruit (Passiflora alata Curtis: Passifloraceae). Mol Ecol Notes 5:863–865

    Article  CAS  Google Scholar 

  • Penha HA, Pereira GS, Zucchi MI, Diniz AL, Carneiro ML (2013) Development of microsatellite markers in sweet passion fruit, and identification of length and conformation polymorphisms within repeat sequences. Plant Breed 132:731–735

    Article  CAS  Google Scholar 

  • Pereira GS, Nunes ES, Laperuta LDC, Braga MF, Penha HÁ, Diniz AL, Munhoz CF, Gazaffi R, Garcia AAF, Vieira MLC (2013) Molecular polymorphism and linkage analysis in sweet passion fruit, an outcrossing species. Ann Appl Biol 162:347–361

    Article  CAS  Google Scholar 

  • Pereira GS, Laperuta LC, Nunes ES, Chavarría L, Pastina MM, Gazaffi R, Geraldi IO, Garcia AAF, Vieira MLC (2017) The sweet passion fruit (Passiflora alata) crop: genetic and phenotypic parameter estimates and QTL mapping for fruit traits. Trop Plant Biol 10:18–29

    Article  Google Scholar 

  • Rocha DI, Pinto DLP, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC (2015) Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. Protoplasma 253:595–609. https://doi.org/10.1007/s00709-015-0837-y

    Article  CAS  PubMed  Google Scholar 

  • Rocha DI, Monte-Bello CC, Aizza LCN, Dornelas MC (2016) A passion fruit putative ortholog of the somatic embryogenesis receptor kinase1 gene is expressed throughout the in vitro de novo shoot organogenesis developmental program. Plant Cell, Tissue Org Cult 125:107–117. https://doi.org/10.1007/s11240-015-0933-x

    Article  CAS  Google Scholar 

  • Rosa YBCJ, Aizza LCB, Armanhi JSL, Dornelas MC (2013a) A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell, Tissue Org Cult 115:233–242

    Article  CAS  Google Scholar 

  • Rosa YBCJ, Aizza LCB, Monte-Bello CC, Dornelas MC (2013b) PmTCP1 encodes a putative TCP transcription factor and is differentially expressed during in vitro organogenesis in Passiflora. In Vitro Cell Dev Biol-Plant 50:36–44

    Article  CAS  Google Scholar 

  • Rosa YBCJ, Aizza LCB, Monte-Bello CC, Dornelas MC (2013c) The PmNAC1 gene is induced by auxin and expressed in differentiating vascular cells in callus cultures of Passiflora. Plant Cell, Tissue Org Cult 115:275–283

    Article  CAS  Google Scholar 

  • Rosado RDS, Rosado LDS, Cremasco JPG, dos Santos CEM, Dias DCFS, Cruz CD (2017) Genetic divergence between passion fruit hybrids and reciprocals based on seedling emergence and vigor. J Seed Sci 39:417–425. https://doi.org/10.1590/2317-1545v39n4183293

    Article  Google Scholar 

  • Santos EA, Souza MM, Abreu PP, Conceição LDHCS, Araujo IS, Viana AP, Almeida AF, Freitas JCO (2012) Confirmation and characterization of interspecific hybrids of Passiflora L. (Passifloraceae) for ornamental use. Euphytica 184:389–399. https://doi.org/10.1007/s10681-011-0607-7

    Article  CAS  Google Scholar 

  • Santos AA, Penha HA, Arnaud B, Munhoz C, Pedrosa-Harand A, Bergès H, Vieira MLC (2014) Begin at the beginning: a BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics 15:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Scorza LCT, Hernandes-Lopes J, Melo-de-Pinna GFA, Dornelas MC (2017) Expression patterns of Passiflora edulis APETALA1/FRUITFULL homologues shed light onto tendril and corona identities. EvoDevo 8:3. https://doi.org/10.1186/s13227-017-0066-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira SR, Dornelas MC, Martinelli AP (2016) Perspectives for a framework to understand aril initiation and development. Front Plant Sci 7:1912

    Article  Google Scholar 

  • Sobol S, Chayut N, Nave N, Kafle D, Hegele M, Kaminetsky R, Wünsche JN, Samach A (2014) Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant, Cell Environ 37:643–657. https://doi.org/10.1111/pce.12184

    Article  CAS  Google Scholar 

  • Souza MM, Pereira TNS, Vieira MLC (2008) Cytogenetic studies in some species of Passiflora L. (Passifloraceae): a review emphasizing Brazilian species. Braz Arch Biol Technol 51:247–258

    Article  CAS  Google Scholar 

  • Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meletti LM, Rezende JA (2006) Resistance to passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, Portland, p 430

    Google Scholar 

  • Wang S, Yang X, Xu M, Lin X, Lin T, Qui J, Shao JQ, Tian N, Yang Q, Zhang Z, Huang S (2015) A rare SNP identified a TCP transcription factor essential for tendril development in cucumber. Mol Plant 8:1795–1808. https://doi.org/10.1016/j.molp.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Yan H, Song L, Jin P, Miao W, Cui H (2018) Analysis of the complete genome sequence of a potyvirus from passion fruit suggests its taxonomic classification as a member of a new species. Arch Virol 163:2583–2586. https://doi.org/10.1007/s00705-018-3885-8

    Article  CAS  PubMed  Google Scholar 

  • Yotoko KSC, Dornelas MC, Togni PD, Fonseca TC, Salzano FM, Bonatto SL, Freitas LB (2011) Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora. PLoS ONE 6:e18212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Carnier Dornelas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gioppato, H.A., da Silva, M.B., Carrara, S. et al. Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theor. Exp. Plant Physiol. 31, 173–181 (2019). https://doi.org/10.1007/s40626-018-0134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0134-1

Keywords

Navigation