Skip to main content
Log in

Escape Strategies of the Madagascar Hissing Cockroach (Gromphadorhina portentosa) in Response to Looming and Localized Heat Stimuli

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Cockroaches can defend themselves from threats by escape behavior. Although wind-evoked turning in Periplaneta americana is robust, little is known about the turning and translational components of the escape response to looming and localized heat stimuli, especially in other cockroach species. In particular, it has been suggested that the Madagascar hissing cockroach (Gromphadorhina portentosa) lacks an escape response. Our goal was to use high-speed video to explore both the turning and translational components of the escape response of Madagascar cockroaches to looming and heat stimuli. Our results demonstrate that, in contrast to expectations based on previous studies, Madagascar cockroaches do show an escape response that was adapted to looming direction and heat location. Although the escape response to looming stimuli was limited, the response to heat stimulation of their tarsi was unexpectedly robust, especially in translation. The translational responses to both looming and heat were directionally similar (160o and 166o). Our results demonstrate that G. portentosa also exhibits a well-organized escape response and emphasize the need to quantify both turning and translation to obtain a more complete description of an animals’ escape movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Camhi JM, Tom W, Volman S (1978) The escape behavior of the cockroach Periplaneta americana. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 128:203–212

    Article  Google Scholar 

  • Card GM (2012) Escape behaviors in insects. Curr Opin Neurobiol 22:180–186

    Article  CAS  Google Scholar 

  • Card G, Dickinson MH (2008) Visually mediated motor planning in the escape response of drosophila. Curr Biol 18:1300–1307

    Article  CAS  Google Scholar 

  • Clark AJ, Triblehorn JD (2014) Mechanical properties of the cuticles of three cockroach species that differ in their wind-evoked escape behavior. PeerJ 2:e501

    Article  Google Scholar 

  • Cooper WE (2006) Risk factors and escape strategy in the grasshopper Dissosteira carolina. Behaviour 143:1201–1218

    Article  Google Scholar 

  • Daltorio KA, Tietz BR, Bender JA, Webster VA, Szczecinski NS, Branicky MS, Ritzmann RE, Quinn RD (2013) A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adapt Behav 21:404–420

    Article  Google Scholar 

  • Domenici P, Blagburn JM, Bacon JP (2011a) Animal escapology I: theoretical issues and emerging trends in escape trajectories. J Exp Biol 214:2463–2473

    Article  Google Scholar 

  • Domenici P, Blagburn JM, Bacon JP (2011b) Animal escapology II: escape trajectory case studies. J Exp Biol 214:2474–2494

    Article  Google Scholar 

  • Domenici P, Booth D, Blagburn JM, Bacon JP (2008) Cockroaches keep predators guessing by using preferred escape trajectories. Curr Biol 18:1792–1796

    Article  CAS  Google Scholar 

  • Dupuy F, Casas J, Body M, Lazzari CR (2011) Danger detection and escape behaviour in wood crickets. J Insect Physiol 57:865–871

    Article  CAS  Google Scholar 

  • Erickson JC, Herrera M, Bustamante M, Shingiro A, Bowen T (2015) Effective stimulus parameters for directed locomotion in Madagascar hissing cockroach biobot. PLoS One 10:e0134348

    Article  Google Scholar 

  • Florence TJ, Reiser MB (2015) Neuroscience: hot on the trail of temperature processing. Nature 519:296

    Article  CAS  Google Scholar 

  • Gillott C (2005) Sensory systems. Entomology. Plenum, New York, pp 373–403

    Google Scholar 

  • Gunnarsson KF (2013) Using Madagascar hissing cockroaches as research subjects in behavior analysis. Southern Illinois University at Carbondale

  • Horridge A (2009) What does an insect see? J Exp Biol 212:2721–2729

    Article  Google Scholar 

  • Kerkut GA, Taylor B (1957) A temperature receptor in the tarsus of the cockroach, Periplaneta americana. J Exp Biol 34:486–493

    Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Maliszewska J, Marciniak P, Kletkiewicz H, Wyszkowska J, Nowakowska A, Rogalska J (2018) Electromagnetic field exposure (50 Hz) impairs response to noxious heat in American cockroach. J Comp Physiol A 204:605–611

    Article  CAS  Google Scholar 

  • McGorry CA, Newman CN, Triblehorn JD (2014) Neural responses from the wind-sensitive interneuron population in four cockroach species. J Insect Physiol 66:59–70

    Article  CAS  Google Scholar 

  • Okada J, Toh Y (1998) Shade response in the escape behavior of the cockroach, Periplaneta americana. Zool Sci 15:831–835

    Article  Google Scholar 

  • Olsen AC, Triblehorn JD (2014) Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species. J Insect Physiol 68:76–86

    Article  CAS  Google Scholar 

  • Reinouts Van Haga, H., Mitchell, B. (1975) Temperature receptors on tarsi of the tsetse fly Glossina morsitans West. Nature 255, 225–226 https://doi.org/10.1038/255225a0

    Article  Google Scholar 

  • Robertson R, Kuhnert C, Dawson J (1996) Thermal avoidance during flight in the locust Locusta migratoria. J Exp Biol 199:1383–1393

  • Santer RD, Yamawaki Y, Rind FC, Simmons PJ (2005) Motor activity and trajectory control during escape jumping in the locust Locusta migratoria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:965–975

    Article  Google Scholar 

  • Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in drosophila. Proc Natl Acad Sci 93:6079–6084

    Article  CAS  Google Scholar 

  • Simpson BS, Ritzmann RE, Pollack AJ (1986) A comparison of the escape behaviors of the cockroaches Blaberus craniifer and Periplaneta americana. J Neurobiol 17:405–419

    Article  CAS  Google Scholar 

  • Stierle IE, Getman M, Comer CM (1994) Multisensory control of escape in the cockroach Periplaneta americana. J Comparative Physiol A: Neuroethol Sensory, Neural, Behav Physiol 174:1–11

    Article  Google Scholar 

  • Tauber E, Camhi J (1995) The wind-evoked escape behavior of the cricket Gryllus bimaculatus: integration of behavioral elements. J Exp Biol 198:1895–1907

    CAS  PubMed  Google Scholar 

  • Tuthill JC, Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26:R1038

    Article  Google Scholar 

  • Van H, Reinouts HA, Mitchell BK (1975) Temperature receptors on tarsi of the tsetse fly Glossina morsitans West. Nature 255:225

    Article  Google Scholar 

  • Ye S, Leung V, Khan A, Baba Y, Comer CM (2003) The antennal system and cockroach evasive behavior. I Roles for visual and mechanosensory cues in the response. J Comparat Physiol A 189:89–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey L. Cleland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(MP4 3798 kb)

ESM2

(MP4 3819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Cleland, C.L. Escape Strategies of the Madagascar Hissing Cockroach (Gromphadorhina portentosa) in Response to Looming and Localized Heat Stimuli. J Insect Behav 32, 315–323 (2019). https://doi.org/10.1007/s10905-019-09737-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-019-09737-6

Keywords

Navigation