Skip to main content
Log in

Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model

  • Topical Review
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Compared to nanofluids with spherical particles, nanofluids with anisotropic particles possess higher thermal conductivity and present a better enhancement option in heat transfer applications. The viscosity variation of such nanofluids becomes of great importance in evaluating their pumping power in thermal systems. This paper presents a comprehensive review of the experimental and theoretical studies on the viscosity of nanofluids with anisotropic particles. The internal mechanisms of viscosity evolution are investigated considering three aspects: particle clustering, particle interactions, and Brownian motion. In experimental studies, important factors including classification and synthetic methods for particle preparation, base fluid, particle loading, particle shape and size, temperature, p H, shear stress and electric field are investigated in detail. Classical theoretical models and empirical relations of the effective viscosity of suspensions are discussed. Some crucial factors such as maximum particle packing fraction, fractal index and intrinsic viscosity models, are examined. A comparison of predictions and experimental results shows that the classical models underestimate suspension viscosity. A comprehensive combination of the modified Krieger-Dougherty (K-D) model with intrinsic viscosity relations for different aspect ratios is suggested for low particle loadings, and the modified Maron-Pierce model (M-D) is recommended for high particle loadings. Possible directions for future works are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Özerinç, S. Kakaç, A.G. Yazicioğlu, Microfluid. Nanofluid. 8, 145 (2009)

    Google Scholar 

  2. S.U. Choi, J.A. Eastman, Fluids Engineering Division (ASME, IL, USA, 1995)

  3. N. Masoumi, N. Sohrabi, A. Behzadmehr, J. Phys. D 42, 055501 (2009)

    ADS  Google Scholar 

  4. M. Chopkar, S. Kumar, D. Bhandari et al., Mater. Sci. Eng. B 139, 141 (2007)

    Google Scholar 

  5. M.B. Kim, H.G. Park, C.Y. Park, Int. J. Air-Cond. Refrig. 26, 1850009 (2018)

    Google Scholar 

  6. H. Masuda, A. Ebata, K. Teramae, Netsu Bussei 7, 227 (1993)

    Google Scholar 

  7. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998)

    ADS  Google Scholar 

  8. F.M. van der Kooij, E.S. Boek, A.P. Philipse, J. Colloid Interface Sci. 235, 344 (2001)

    ADS  Google Scholar 

  9. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Google Scholar 

  10. E.V. Timofeeva, J.L. Routbort, D. Singh, J. Appl. Phys. 106, 014304 (2009)

    ADS  Google Scholar 

  11. H. Chen, S. Witharana, Y. Jin et al., Particuology 7, 151 (2009)

    Google Scholar 

  12. A. Turgut, I. Tavman, M. Chirtoc et al., Int. J. Thermophys. 30, 1213 (2009)

    ADS  Google Scholar 

  13. J. Buongiorno, D.C. Venerus, N. Prabhat et al., J. Appl. Phys. 106, 094312 (2009)

    ADS  Google Scholar 

  14. S. Kim, C. Kim, W.H. Lee et al., J. Appl. Phys. 110, 034316 (2011)

    ADS  Google Scholar 

  15. S. Kim, C. Kim, Korea-Aust. Rheol. J. 24, 65 (2012)

    Google Scholar 

  16. S. Ferrouillat, A. Bontemps, O. Poncelet et al., Int. J. Mech. Ind. Eng. 1, 7 (2011)

    Google Scholar 

  17. M. Farbod, R. Kouhpeymani asl, A.R. Noghreh abadi, Colloids Surf. A: Physicochem. Eng. Asp. 474, 71 (2015)

    Google Scholar 

  18. L.S. Sundar, M.H. Farooky, S.N. Sarada et al., Int. Commun. Heat Mass Transfer 41, 41 (2013)

    Google Scholar 

  19. P. Feng, Q. Wan, X.Q. Fu et al., Appl. Phys. Lett. 87, 033114 (2005)

    ADS  Google Scholar 

  20. V. Badescu, L. Udrea, O. Rotariu et al., J. Phys. 149, 012101 (2009)

    Google Scholar 

  21. T. Kitano, T. Kataoka, T. Nishimura et al., Rheol. Acta 19, 764 (1980)

    Google Scholar 

  22. T. Kitano, T. Kataoka, T. Shirota, Rheol. Acta 20, 207 (1981)

    Google Scholar 

  23. M. Assael, C.F. Chen, I. Metaxa et al., Int. J. Thermophys. 25, 971 (2004)

    ADS  Google Scholar 

  24. D. Wen, Y. Ding, J. Thermophys. Heat Transfer 18, 481 (2004)

    Google Scholar 

  25. Y. Ding, H. Alias, D. Wen et al., Int. J. Heat Mass Transfer 49, 240 (2006)

    Google Scholar 

  26. Y. Yang, E.A. Grulke, Z.G. Zhang et al., J. Appl. Phys. 99, 114307 (2006)

    ADS  Google Scholar 

  27. H. Chen, Y. Ding, C. Tan, New J. Phys. 9, 367 (2007)

    ADS  Google Scholar 

  28. H. Chen, Y. Ding, A. Lapkin et al., J. Nanopart. Res. 11, 1513 (2009)

    ADS  Google Scholar 

  29. N. Jha, S. Ramaprabhu, J. Appl. Phys. 106, 084317 (2009)

    ADS  Google Scholar 

  30. A. Amrollahi, A.M. Rashidi, R. Lotfi et al., Int. Commun. Heat Mass Transfer 37, 717 (2010)

    Google Scholar 

  31. S. Sen Gupta, V. Manoj Siva, S. Krishnan et al., J. Appl. Phys. 110, 084302 (2011)

    ADS  Google Scholar 

  32. S. Bobbo, L. Fedele, A. Benetti et al., Exp. Therm. Fluid Sci. 36, 65 (2012)

    Google Scholar 

  33. G. Vakili-Nezhaad, A. Dorany, Energy Proc. 14, 512 (2012)

    Google Scholar 

  34. S. Halelfadl, P. Estelle, B. Aladag et al., Int. J. Therm. Sci. 71, 111 (2013)

    Google Scholar 

  35. B. Jo, D. Banerjee, Mater. Lett. 122, 212 (2014)

    Google Scholar 

  36. X. Li, Y. Chen, S. Mo et al., Thermochim. Acta 595, 6 (2014)

    Google Scholar 

  37. M. Baratpour, A. Karimipour, M. Afrand et al., Int. Commun. Heat Mass Transfer 74, 108 (2016)

    Google Scholar 

  38. C. Lin, J.W. Shan, Phys. Fluids 22, 022001 (2010)

    ADS  Google Scholar 

  39. J. Yin, X. Zhao, Colloids Surf. A: Physicochem. Eng. Asp. 329, 153 (2008)

    Google Scholar 

  40. C. Lin, J.W. Shan, Phys. Fluids 22, 022001 (2010)

    ADS  Google Scholar 

  41. J. Yin, X. Zhao, X. Xia et al., Polymer 49, 4413 (2008)

    Google Scholar 

  42. X. Xia, J. Yin, P. Qiang et al., Polymer 52, 786 (2011)

    Google Scholar 

  43. H.Q. Xie, J.C. Wang, T.G. Xi et al., Int. J. Thermophys. 23, 571 (2002)

    Google Scholar 

  44. S. Ferrouillat, A. Bontemps, O. Poncelet et al., Appl. Therm. Eng. 51, 839 (2013)

    Google Scholar 

  45. S.S. Bhandari, K. Muralidhar, Y.M. Joshi, Ind. Eng. Chem. Res. 52, 15114 (2013)

    Google Scholar 

  46. J.P. Meyer, S.A. Adio, M. Sharifpur et al., Heat Transfer Eng. 37, 387 (2015)

    ADS  Google Scholar 

  47. P.C. Mishra, S. Mukherjee, S.K. Nayak et al., Int. Nano Lett. 4, 109 (2014)

    Google Scholar 

  48. M. Gupta, V. Singh, R. Kumar et al., Renew. Sustain. Energy Rev. 74, 638 (2017)

    Google Scholar 

  49. R. Prasher, D. Song, J. Wang et al., Appl. Phys. Lett. 89, 133108 (2006)

    ADS  Google Scholar 

  50. V.Y. Rudyak, A.V. Minakov, Eur. Phys. J. E 41, 15 (2018)

    Google Scholar 

  51. K. Leong, R. Saidur, S. Kazi et al., Appl. Therm. Eng. 30, 2685 (2010)

    Google Scholar 

  52. R. Saidur, K. Leong, H. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)

    Google Scholar 

  53. R. Saidur, T. Meng, Z. Said et al., Int. J. Heat Mass Transfer 55, 5899 (2012)

    Google Scholar 

  54. D. Zang, X. Wang, X. Geng et al., Soft Matter 9, 394 (2013)

    ADS  Google Scholar 

  55. R. Patel, Eur. Phys. J. E 35, 109 (2012)

    Google Scholar 

  56. L.S. Sundar, K.V. Sharma, M.T. Naik et al., Renew. Sustain. Energy Rev. 25, 670 (2013)

    Google Scholar 

  57. S.S. Murshed, C.N. De Castro, Nanofluids: Synthesis, Properties, and Applications (Nova Science Publishers, Inc., 2014)

  58. S.-S. Hsieh, H.-Y. Leu, H.-H. Liu, Nanoscale Res. Lett. 10, 139 (2015)

    ADS  Google Scholar 

  59. Z. Said, R. Saidur, M. Sabiha et al., J. Clean. Prod. 112, 3915 (2016)

    Google Scholar 

  60. S.M.S. Murshed, P. Estelle, Renew. Sustain. Energy Rev. 76, 1134 (2017)

    Google Scholar 

  61. I.M. Mahbubul, R. Saidur, M.A. Amalina, Int. J. Heat Mass Transfer 55, 874 (2012)

    Google Scholar 

  62. P.N. Nwosu, J. Meyer, M. Sharifpur, J. Nanotechnol. Eng. Med. 5, 031008 (2014)

    Google Scholar 

  63. P.M. Kumar, J. Kumar, S. Suresh, Int. J. Eng. Innov. Res. 1, 128 (2012)

    Google Scholar 

  64. L. Yang, J. Xu, K. Du et al., Powder Technol. 317, 348 (2017)

    Google Scholar 

  65. J. Yin, X. Zhao, Nanoscale Res. Lett. 6, 256 (2011)

    ADS  Google Scholar 

  66. P.M. Kumar, J. Kumar, R. Tamilarasan et al., Eng. J. 19, 67 (2015)

    Google Scholar 

  67. K. Bashirnezhad, S. Bazri, M.R. Safaei et al., Int. Commun. Heat Mass Transfer 73, 114 (2016)

    Google Scholar 

  68. W.H. Azmi, K.V. Sharma, R. Mamat et al., Renew. Sustain. Energy Rev. 53, 1046 (2016)

    Google Scholar 

  69. D.K. Devendiran, V.A. Amirtham, Renew. Sustain. Energy Rev. 60, 21 (2016)

    Google Scholar 

  70. A. Ghadimi, R. Saidur, H.S.C. Metselaar, Int. J. Heat Mass Transfer 54, 4051 (2011)

    Google Scholar 

  71. Y. Li, J.e. Zhou, S. Tung et al., Powder Technol. 196, 89 (2009)

    Google Scholar 

  72. H.D. Koca, S. Doganay, A. Turgut et al., Renew. Sustain. Energy Rev. 82, 1664 (2018)

    Google Scholar 

  73. K.H. Solangi, S.N. Kazi, M.R. Luhur et al., Energy 89, 1065 (2015)

    Google Scholar 

  74. M.U. Sajid, H.M. Ali, Int. J. Heat Mass Transfer 126, 211 (2018)

    Google Scholar 

  75. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev. 53, 779 (2016)

    Google Scholar 

  76. E. Ganani, R.L. Powell, J. Rheol. 30, 995 (1986)

    ADS  Google Scholar 

  77. W. Pabst, E. Gregorová, C. Berthold, J. Eur. Ceram. Soc. 26, 149 (2006)

    Google Scholar 

  78. L. Chen, H. Xie, Y. Li et al., Thermochim. Acta 477, 21 (2008)

    Google Scholar 

  79. L. Chen, H. Xie, W. Yu et al., J. Dispers. Sci. Technol. 32, 550 (2011)

    Google Scholar 

  80. T.X. Phuoc, M. Massoudi, R.-H. Chen, Int. J. Therm. Sci. 50, 12 (2011)

    Google Scholar 

  81. S. Harish, K. Ishikawa, E. Einarsson et al., Mater. Express 2, 213 (2012)

    Google Scholar 

  82. Y.-H. Hung, W.-C. Chou, Int. J. Chem. Eng. Appl. 3, 347 (2012)

    Google Scholar 

  83. R. Sadri, G. Ahmadi, H. Togun et al., Nanoscale Res. Lett. 9, 151 (2014)

    ADS  Google Scholar 

  84. E.V. Timofeeva, W. Yu, D.M. France et al., Nanoscale Res. Lett. 6, 182 (2011)

    ADS  Google Scholar 

  85. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, UK, 1989)

  86. H. Xie, H. Lee, W. Youn et al., J. Appl. Phys. 94, 4967 (2003)

    ADS  Google Scholar 

  87. M. Liu, C. Ding, J. Wang, R. Soc. Chem. Adv. 6, 3571 (2016)

    Google Scholar 

  88. C.-W. Nan, G. Liu, Y. Lin et al., Appl. Phys. Lett. 79, 3549 (2004)

    ADS  Google Scholar 

  89. T.C. Clancy, T.S. Gates, Polymer 47, 5990 (2006)

    Google Scholar 

  90. L. Chen, H. Xie, Thermochim. Acta 497, 67 (2010)

    Google Scholar 

  91. S.U.S. Choi, Z.G. Zhang, W. Yu et al., Appl. Phys. Lett. 79, 2252 (2001)

    ADS  Google Scholar 

  92. L. Yu, D. Liu, F. Botz, Exp. Therm. Fluid Sci. 37, 72 (2012)

    Google Scholar 

  93. B. Yang, Z.H. Han, Appl. Phys. Lett. 89, 083111 (2006)

    ADS  Google Scholar 

  94. S. Mueller, E.W. Llewellin, H.M. Mader, Proc. R. Soc. A: Math. Phys. 466, 1201 (2010)

    ADS  Google Scholar 

  95. R. Simha, J. Phys. Chem. C 44, 25 (1940)

    Google Scholar 

  96. H. Brenner, D.W. Condiff, J. Colloid Interface Sci. 47, 199 (1974)

    ADS  Google Scholar 

  97. W. Kuhn, H. Kuhn, P. Buchner, Hydrodynamisches verhalten von makromolekülen in lösung (Springer, Berlin, Heidelberg, 1951)

  98. W. Kuhn, H. Kuhn, Helv. Chim. Acta 28, 97 (1945)

    Google Scholar 

  99. J.W. Gao, R.T. Zheng, H. Ohtani et al., Nano Lett. 9, 4128 (2009)

    ADS  Google Scholar 

  100. G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)

    ADS  MathSciNet  Google Scholar 

  101. I.M. Krieger, T.J. Dougherty, Trans. Soc. Rheol. 3, 137 (1959)

    Google Scholar 

  102. D.J. Jeffrey, A. Acrivos, AIChE J. 22, 417 (1976)

    Google Scholar 

  103. Y. Xuan, Q. Li, W. Hu, AIChE J. 49, 1038 (2003)

    Google Scholar 

  104. K. Anoop, S. Kabelac, T. Sundararajan et al., J. Appl. Phys. 106, 034909 (2009)

    ADS  Google Scholar 

  105. Gaganpreet, S. Srivastava, Phys. Chem. Liq. 53, 174 (2014)

    Google Scholar 

  106. R.G. Larson, The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering) (Oxford University Press, New York, 1999)

  107. J. Zhao, Y. Duan, X. Wang et al., J. Nanopart. Res. 13, 5033 (2011)

    ADS  Google Scholar 

  108. G.B. Jeffrey, Proc. R. Soc. London A 102, 161 (1923)

    ADS  Google Scholar 

  109. A. Einstein, Ann. Phys. 324, 289 (1906)

    Google Scholar 

  110. A. Einstein, Ann. Phys. 339, 591 (1911)

    Google Scholar 

  111. P. Keblinski, J.A. Eastman, D.G. Cahill, Mater. Today 8, 36 (2005)

    Google Scholar 

  112. Y. Ding, H. Chen, L. Wang et al., KONA Powder Part. J. 25, 23 (2007)

    Google Scholar 

  113. H. Zhu, C. Zhang, S. Liu et al., Appl. Phys. Lett. 89, 023123 (2006)

    ADS  Google Scholar 

  114. P. Estelle, S. Halelfadl, N. Doner et al., Curr. Nanosci. 9, 225 (2013)

    ADS  Google Scholar 

  115. H. Chen, W. Yang, Y. He et al., Powder Technol. 183, 63 (2008)

    Google Scholar 

  116. Z.-s. Hong, Y. Cao, J.-f. Deng, Mater. Lett. 52, 34 (2002)

    Google Scholar 

  117. G. Du, G. Van Tendeloo, Chem. Phys. Lett. 393, 64 (2004)

    ADS  Google Scholar 

  118. M. Cao, Y. Wang, C. Guo et al., J. Nanosci. Nanotechnol. 4, 824 (2004)

    Google Scholar 

  119. A.M. Rashidi, M.M. Akbarnejad, A.A. Khodadadi et al., Nanotechnology 18, 315605 (2007)

    Google Scholar 

  120. S. Maruyama, R. Kojima, Y. Miyauchi et al., Chem. Phys. Lett. 360, 229 (2002)

    ADS  Google Scholar 

  121. L. Yu, D. Liu, F. Botz, ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems (ASME, Oregon, USA, 2011)

  122. R. Prasher, P. Bhattacharya, P.E. Phelan, J. Heat Transfer 128, 588 (2006)

    Google Scholar 

  123. C.T. Wamkam, M.K. Opoku, H. Hong et al., J. Appl. Phys. 109, 024305 (2011)

    ADS  Google Scholar 

  124. R. Prasher, P.E. Phelan, P. Bhattacharya, Nano Lett. 6, 1529 (2006)

    ADS  Google Scholar 

  125. S.W. Lee, S.D. Park, S. Kang et al., Int. J. Heat Mass Transfer 54, 433 (2011)

    Google Scholar 

  126. R. Taylor, S. Coulombe, T. Otanicar et al., J. Appl. Phys. 113, 1 (2013)

    Google Scholar 

  127. P. Garg, J.L. Alvarado, C. Marsh et al., Int. J. Heat Mass Transfer 52, 5090 (2009)

    Google Scholar 

  128. Y. Yang, A. Oztekin, S. Neti et al., J. Nanopart. Res. 14, 852 (2012)

    ADS  Google Scholar 

  129. J.P. Coulter, K.D. Weiss, J.D. Carlson, J. Intell. Mater. Syst. Struct. 4, 248 (1993)

    Google Scholar 

  130. B. Cetin, H.I. Unal, O. Erol, Smart Mater. Struct. 21, 125011 (2012)

    ADS  Google Scholar 

  131. M.M. Ramos-Tejada, M.J. Espin, R. Perea et al., J. Non-Newton. Fluid Mech. 159, 34 (2009)

    Google Scholar 

  132. R. Simha, J. Chem. Phys. 13, 188 (1945)

    ADS  Google Scholar 

  133. M. Mooney, J. Colloid Sci. 6, 162 (1951)

    Google Scholar 

  134. H.J. Choi, T.M. Kwon, M.S. Jhon, J. Mater. Sci. 35, 889 (2000)

    ADS  Google Scholar 

  135. D.H. Berry, W.B. Russel, J. Fluid Mech. 180, 475 (1987)

    ADS  Google Scholar 

  136. H.A. Barnes, R. Soc. Chem. 26, 36 (1981)

    Google Scholar 

  137. J.W. Goodwin, R.W. Hughes, Rheology for Chemists: An Introduction (Royal Society of Chemistry, Cambridge, UK, 2000)

  138. R. Prasher, W. Evans, P. Meakin et al., Appl. Phys. Lett. 89, 143119 (2006)

    ADS  Google Scholar 

  139. B. Wang, L. Zhou, X. Peng, Int. J. Heat Mass Transfer 46, 2665 (2003)

    Google Scholar 

  140. S.H. Maron, P.E. Pierce, J. Colloid Sci. 11, 80 (1956)

    Google Scholar 

  141. R.M. Turian, T.F. Yuan, AIChE J. 23, 232 (1977)

    Google Scholar 

  142. J.F. Clarke, IMA J. Appl. Math. 3, 347 (1967)

    Google Scholar 

  143. H. Giesekus, Disperse Systems: Dependence of Rheological Properties on the Type of Flow with Implications for Food Rheology (Applied Science Publishers, London, 1983)

  144. C.D. de Kruif, E.M.F. Van Iersel, A. Vrij et al., J. Chem. Phys. 83, 4717 (1985)

    ADS  Google Scholar 

  145. C. Chang, R.L. Powell, Phys. Fluids 6, 1628 (1994)

    ADS  Google Scholar 

  146. W. Haas, M. Zrinyi, H.-G. Kilian et al., Colloid Polym. Sci. 271, 1024 (1993)

    Google Scholar 

  147. T. Waite, J. Cleaver, J. Beattie, J. Colloid Interface Sci. 241, 333 (2001)

    ADS  Google Scholar 

  148. A. Mohraz, D.B. Moler, R.M. Ziff et al., Phys. Rev. Lett. 92, 155503 (2004)

    ADS  Google Scholar 

  149. E.K. Hobbie, D.J. Fry, Phys. Rev. Lett. 97, 036101 (2006)

    ADS  Google Scholar 

  150. N. Micali, V. Villari, M.A. Castriciano et al., J. Phys. Chem. B 110, 8289 (2006)

    Google Scholar 

  151. J.M. Lin, T.L. Lin, U.S. Jeng et al., J. Appl. Crystallogr. 40, s540 (2007)

    Google Scholar 

  152. J. Chevalier, O. Tillement, F. Ayela, Phys. Rev. E 80, 051403 (2009)

    ADS  Google Scholar 

  153. Q. Chen, C. Saltiel, S. Manickavasagam et al., J. Colloid Interface Sci. 280, 91 (2004)

    ADS  Google Scholar 

  154. T. Chatterjee, R. Krishnamoorti, Phys. Rev. E 75, 050403 (2007)

    ADS  Google Scholar 

  155. F. Khalkhal, P.J. Carreau, Rheol. Acta 50, 717 (2011)

    Google Scholar 

  156. L. Leal, E. Hinch, J. Fluid Mech. 46, 685 (1971)

    ADS  Google Scholar 

  157. H.A. Scheraga, J. Chem. Phys. 23, 1526 (1955)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Satish G. Kandlikar and Xuemin Ye designed work concept; Xuemin Ye and Chunxi Li wrote the manuscript.

Corresponding author

Correspondence to Satish G. Kandlikar.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Kandlikar, S.G. & Li, C. Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model. Eur. Phys. J. E 42, 159 (2019). https://doi.org/10.1140/epje/i2019-11923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11923-7

Keywords

Navigation