Skip to main content

Advertisement

Log in

ACPA-positive versus ACPA-negative rheumatoid arthritis: two distinct erosive disease entities on radiography and ultrasonography

  • Imaging
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The objective of this study is to assess the prevalence, localization, and severity of bone erosions on radiography (RX) and ultrasonography (US) according to ACPA status in patients with rheumatoid arthritis (RA). 78 patients with ACPA-positive (ACPA+) RA and 30 patients with ACPA-negative (ACPA−) RA fulfilling the ACR 1987 and/or ACR/EULAR 2010 criteria were consecutively included. On RX, a modified Sharp erosion score (SHSe) was evaluated by two blinded readers and one adjudicator for discordant cases (number of eroded joints ≤ three). On US, erosions were scored on six bilateral joints (MCP2, 3, 5; MTP2, 3, 5) with a four-point scale to calculate the total US score for erosions (USSe). The mean total SHSe and USSe were 3.7 and 4.4 times higher in the ACPA+ group than in the ACPA− group, respectively (P < 0.001). On both RX and US, the most discriminating joint between the two groups was MTP5, especially in cases with bilateral erosion. Based on multivariate analyses, ACPA + status was associated with erosive RA on RX according to the EULAR 2013 definition criteria [OR 4.4 (95% CI 1.2–16.4)], and on US according to the following two definitions: the presence of at least two eroded joint facets [OR 3.7 (95% CI 1.4–9.9)] or at least one grade 2 joint facet erosion [OR 9.0 (95% CI 2.8–28.4)]. Compared to ACPA− RA, ACPA + RA is associated independently with more severe erosive disease on RX and US. Both US and RX bilateral erosions in MTP5 joints are highly discriminant for ACPA + RA patients (97.8% in US and 100% in RX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guillemin F, Saraux A, Guggenbuhl P, Roux CH, Fardellone P, Le Bihan E et al (2005) Prevalence of rheumatoid arthritis in France: 2001. Ann Rheum Dis 64:1427–1430

    Article  CAS  Google Scholar 

  2. Alamanos Y, Voulgari PV, Drosos AA (2006) Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin Arthritis Rheum 36:182–188

    Article  Google Scholar 

  3. Vossenaar ER, Zendman AJW, van Venrooij WJ, Pruijn GJM (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays News Rev Mol Cell Dev Biol 25:1106–1118

    Article  CAS  Google Scholar 

  4. Klareskog L, Rönnelid J, Lundberg K, Padyukov L, Alfredsson L (2008) Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol 26:651–675

    Article  CAS  Google Scholar 

  5. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588

    Article  Google Scholar 

  6. Jilani AA, Mackworth-Young CG (2015) The role of citrullinated protein antibodies in predicting erosive disease in rheumatoid arthritis: a systematic literature review and meta-analysis. Int J Rheumatol 2015:728610

    Article  CAS  Google Scholar 

  7. Forslind K, Ahlmén M, Eberhardt K, Hafström I, Svensson B, BARFOT Study Group (2004) Prediction of radiological outcome in early rheumatoid arthritis in clinical practice: role of antibodies to citrullinated peptides (anti-CCP). Ann Rheum Dis 63:1090–1095

    Article  CAS  Google Scholar 

  8. Baillet A, Gaujoux-Viala C, Mouterde G, Pham T, Tebib J, Saraux A et al (2011) Comparison of the efficacy of sonography, magnetic resonance imaging and conventional radiography for the detection of bone erosions in rheumatoid arthritis patients: a systematic review and meta-analysis. Rheumatology (Oxford) 50:1137–1147

    Article  Google Scholar 

  9. Van der Heijde D, van Leeuwen M, van Riel P, van de Putte L (1995) Radiographic progression on radiographs of hands and feet during the first 3 years of rheumatoid arthritis measured according to Sharp’s method (van der Heijde modification). J Rheumatol 22:1792–1796

    PubMed  Google Scholar 

  10. Van der Heijde D, Dankert T, Nieman F, Rau R, Boers M (1999) Reliability and sensitivity to change of a simplification of the Sharp/van der Heijde radiological assessment in rheumatoid arthritis. Rheumatology (Oxford) 38:941–947

    Article  Google Scholar 

  11. Guillemin F, Billot L, Boini S, Gerard N, Ødegaard S, Kvien TK (2005) Reproducibility and sensitivity to change of 5 methods for scoring hand radiographic damage in patients with rheumatoid arthritis. J Rheumatol 32:778–786

    PubMed  Google Scholar 

  12. Usón J, Fernández-Espartero C, Villaverde V, Condés E, Godo J, Martínez-Blasco MJ et al (2014) Symptomatic and asymptomatic interphalageal osteoarthritis: an ultrasonographic study. Reumatol Clin 10:278–282

    Article  Google Scholar 

  13. Gutierrez M, Schmidt WA, Thiele RG, Keen HI, Kaeley GS, Naredo E et al (2015) International consensus for ultrasound lesions in gout: results of Delphi process and web-reliability exercise. Rheumatology (Oxford) 54:1797–1805

    Article  Google Scholar 

  14. Weiner SM, Jurenz S, Uhl M, Lange-Nolde A, Warnatz K, Peter HH et al (2008) Ultrasonography in the assessment of peripheral joint involvement in psoriatic arthritis: a comparison with radiography, MRI and scintigraphy. Clin Rheumatol 27:983–989

    Article  CAS  Google Scholar 

  15. Wakefield RJ, Gibbon WW, Conaghan PG, O’Connor P, McGonagle D, Pease C et al (2000) The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum 43:2762–2770

    Article  CAS  Google Scholar 

  16. Bajaj S, Lopez-Ben R, Oster R, Alarcón GS (2006) Ultrasound detects rapid progression of erosive disease in early rheumatoid arthritis: a prospective longitudinal study. Skeletal Radiol 36:123–128

    Article  Google Scholar 

  17. Van der Heijde D (2000) How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol 27:261–263

    PubMed  Google Scholar 

  18. Van der Heijde D, van der Helm-van Mil AHM, Aletaha D, Bingham CO, Burmester GR, Dougados M et al (2013) EULAR definition of erosive disease in light of the 2010 ACR/EULAR rheumatoid arthritis classification criteria. Ann Rheum Dis 72:479–481

    Article  Google Scholar 

  19. Scheel AK (2006) Prospective 7 year follow up imaging study comparing radiography, ultrasonography, and magnetic resonance imaging in rheumatoid arthritis finger joints. Ann Rheum Dis 65:595–600

    Article  CAS  Google Scholar 

  20. Szkudlarek M, Klarlund M, Narvestad E, Court-Payen M, Strandberg C, Jensen KE et al (2006) Ultrasonography of the metacarpophalangeal and proximal interphalangeal joints in rheumatoid arthritis: a comparison with magnetic resonance imaging, conventional radiography and clinical examination. Arthritis Res Ther 8:R52

    Article  Google Scholar 

  21. Iagnocco A, Coari G (2000) Usefulness of high resolution US in the evaluation of effusion in osteoarthritic first carpometacarpal joint. Scand J Rheumatol 29:170–173

    Article  CAS  Google Scholar 

  22. Zayat AS, Ellegaard K, Conaghan PG, Terslev L, Hensor EMA, Freeston JE et al (2015) The specificity of ultrasound-detected bone erosions for rheumatoid arthritis. Ann Rheum Dis 74:897–903

    Article  Google Scholar 

  23. Roux C, Gandjbakhch F, Pierreisnard A, Couderc M, Lukas C, Masri R et al (2019) Ultrasonographic criteria for the diagnosis of erosive rheumatoid arthritis using osteoarthritic patients as controls compared to validated radiographic criteria. Jt Bone Spine 86(4):467–474

    Article  Google Scholar 

  24. Roux C, Gandjbakhch F, Pierreisnard A, Couderc M, Lukas C, Masri R et al (2019) Optimization of ultrasonographic examination for the diagnosis of erosive rheumatoid arthritis in comparison to erosive hand osteoarthritis. Eur J Radiol 118:10–18

    Article  Google Scholar 

  25. Gadeholt O, Hausotter K, Eberle H et al (2017) Erosion patterns in seropositive and seronegative rheumatoid arthritis: a joint-by-joint approach. ACR Meeting Abstracts. https://acrabstracts.org/abstract/erosion-patterns-in-seropositive-and-seronegative-rheumatoid-arthritis-a-joint-by-joint-approach. Accessed 22 Oct 2017

  26. Szkudlarek M, Terslev L, Wakefield RJ, Backhaus M, Balint PV, Bruyn GAW et al (2015) Summary findings of a systematic literature review of the ultrasound assessment of bone erosions in rheumatoid arthritis. J Rheumatol 43:12–21

    Article  Google Scholar 

  27. Tamas M-M, Filippucci E, Becciolini A, Gutierrez M, Di Geso L, Bonfiglioli K et al (2014) Bone erosions in rheumatoid arthritis: ultrasound findings in the early stage of the disease. Rheumatology 53:1100–1107

    Article  Google Scholar 

  28. Ajeganova S, van Steenbergen HW, Verheul MK, Forslind K, Hafström I, Toes REM et al (2015) The association between anti-carbamylated protein (anti-CarP) antibodies and radiographic progression in early rheumatoid arthritis: a study exploring replication and the added value to ACPA and rheumatoid factor. Ann Rheum Dis 76:112–118

    Article  Google Scholar 

  29. Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8:656–664

    Article  CAS  Google Scholar 

  30. Nielen MMJ, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MHMT et al (2004) Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 50:380–386

    Article  Google Scholar 

  31. Van Schaardenburg D, Nielen MMJ, Lems WF, Twisk JWR, Reesink HW, van de Stadt RJ et al (2011) Bone metabolism is altered in preclinical rheumatoid arthritis. Ann Rheum Dis 70:1173–1174

    Article  Google Scholar 

  32. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Investig 122:1791–1802

    Article  CAS  Google Scholar 

  33. Kocijan R, Harre U, Schett G (2013) ACPA and Bone Loss in Rheumatoid Arthritis. Curr Rheumatol Rep 15:366

    Article  Google Scholar 

  34. Guler H, Turhanoglu AD, Ozer B, Ozer C, Balci A (2008) The relationship between anti-cyclic citrullinated peptide and bone mineral density and radiographic damage in patients with rheumatoid arthritis. Scand J Rheumatol 37:337–342

    Article  CAS  Google Scholar 

  35. Shidara K, Inoue E, Tanaka E, Hoshi D, Seto Y, Nakajima A et al (2011) Comparison of the second and third generation anti-cyclic citrullinated peptide antibody assays in the diagnosis of Japanese patients with rheumatoid arthritis. Rheumatol Int 31:617–622

    Article  CAS  Google Scholar 

  36. Vos I, Van Mol C, Trouw LA, Mahler M, Bakker JA, Van Offel J et al (2017) Anti-citrullinated protein antibodies in the diagnosis of rheumatoid arthritis (RA): diagnostic performance of automated anti-CCP-2 and anti-CCP-3 antibodies assays. Clin Rheumatol 36:1487–1492

    Article  Google Scholar 

  37. Zhang W-C, Wu H, Chen W-X (2014) Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide 2 antibody and anti-cyclic citrullinated peptide 3 antibody in rheumatoid arthritis. Clin Chem Lab Med CCLM 52:779–790

    CAS  PubMed  Google Scholar 

  38. Barra L, Bykerk V, Pope JE, Haraoui BP, Hitchon CA, Thorne JC et al (2013) Anticitrullinated protein antibodies and rheumatoid factor fluctuate in early inflammatory arthritis and do not predict clinical outcomes. J Rheumatol 40:1259–1267

    Article  CAS  Google Scholar 

  39. Kastbom A, Strandberg G, Lindroos A, Skogh T (2004) Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann Rheum Dis 63:1085–1089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JG and DL designed the study. AP, MC, and ICV performed the radiography assessment. DL and ICV performed the ultrasound assessment. MDC provided ACPA and RF values. JG and CR collected all of the data. EALL, ICU, TR, and EALB analyzed the data. JG, EALL, and DL aided in interpreting the results. JG wrote the paper with input from all authors. All co-authors approve the final version of the manuscript and take full responsibility for all its aspects.

Corresponding author

Correspondence to Julien Grosse.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee [the ethical committee of Nancy approved the study in June 2017 (number: R2017-17)] and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 316 kb)

Supplementary file2 (PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosse, J., Allado, E., Roux, C. et al. ACPA-positive versus ACPA-negative rheumatoid arthritis: two distinct erosive disease entities on radiography and ultrasonography. Rheumatol Int 40, 615–624 (2020). https://doi.org/10.1007/s00296-019-04492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-019-04492-5

Keywords

Navigation