Skip to main content
Log in

Generalized Polynomial Chaos Expansion Approach for Uncertainty Quantification in Small Satellite Orbital Debris Problems

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper demonstrates the use of generalized polynomial chaos expansion for the propagation of uncertainties present in various dynamical models. Specifically, a sampling based non-intrusive approach using pseudospectral stochastic collocation is employed to obtain the coefficients required for the generalized polynomial chaos expansion. Various recently developed quadrature techniques are employed within the generalized polynomial chaos expansion framework in order to illustrate their efficacy. In addition to that, the paper also provides an efficient numerical quadrature technique to be used as a sampling technique in stochastic collocation to quantify the uncertainties which are governed by different distribution functions. Results are presented for the orbital motion of a 2U CubeSat subject to initial condition uncertainty and drag related parametric uncertainty demonstrating the accuracy and effectiveness of the proposed technique. Further, stochastic sensitivity analysis is performed to gain insight into the impact of uncertain variables on the evolution of the quantities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sauer, T.: Numerical solution of stochastic differential equations in finance. In: Handbook of Computational Finance, pp. 529–550. Springer (2012)

  2. Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Science & Business Media (2013)

  3. Duan, J.: An Introduction to Stochastic Dynamics, vol. 51. Cambridge University Press (2015)

  4. Gao, T., Duan, J., Li, X.: Fokker–planck equations for stochastic dynamical systems with symmetric Lévy motions. Appl. Math. Comput. 278, 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  5. Sudret, B.: Uncertainty propagation and sensitivity analysis in mechanical models–contributions to structural reliability and stochastic spectral methods. Habilitationa diriger des recherches. Université Blaise Pascal, Clermont-Ferrand (2007)

    Google Scholar 

  6. Zhang, D.: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Elsevier (2001)

  7. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  8. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton university press (2010)

  9. Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: Response statistics. In: Stochastic Finite Elements: A Spectral Approach, pp. 101–119. Springer (1991)

  10. Xiu, D., Hesthaven, J.S: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  Google Scholar 

  11. Stroud, A. H, Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  12. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad Nauk SSSR 148(5), 1042–1045 (1963)

    MathSciNet  MATH  Google Scholar 

  13. Congedo, P.M., Abgrall, R., Geraci, G.: On the use of the Sparse Grid techniques coupled with Polynomial Chaos. Research Report RR-7579, INRIA (2011)

  14. Jones, B.A., Doostan, A., Born, G.H.: Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control Dyn. 36(2), 430–444 (2013)

    Article  Google Scholar 

  15. Dell’Elce, L., Kerschen, G.: Probabilistic assessment of lifetime of low-earth-orbit spacecraft: uncertainty propagation and sensitivity analysis. J. Guid. Control Dyn. 38(5), 886–899 (2014)

    Article  Google Scholar 

  16. Adurthi, N., Singla, P., Singh, T.: Conjugate unscented transformation: Applications to estimation and control. J. Dyn. Syst. Measur. Control 140(3), 030907 (2018)

    Article  Google Scholar 

  17. Madankan, R., Singla, P., Singh, T.: Application of conjugate unscented transform in source parameters estimation. In: American Control Conference (ACC), pp. 2448–2453. IEEE (2013)

  18. Fisher, J.R.: Stability analysis and control of stochastic dynamic systems using polynomial chaos, PhD thesis (2008)

  19. Xiu, D., Karniadakis, G.E.: The wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  20. Bhusal, R., Subbarao, K.: Uncertainty quantification using generalized polynomial chaos expansion for nonlinear dynamical systems with mixed state and parameter uncertainties. J. Comput. Nonlin. Dyn. 14(2), 021011 (2019)

    Article  Google Scholar 

  21. Desai, A., Sarkar, S.: Analysis of a nonlinear aeroelastic system with parametric uncertainties using polynomial chaos expansion. Math. Probl. Eng., 2010 (2010)

  22. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Safety 93(7), 964–979 (2008)

    Article  Google Scholar 

  23. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exper. 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econ. 144(1), 62–80 (2008)

    Article  MathSciNet  Google Scholar 

  25. Wasilkowski, G.W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11(1), 1–56 (1995)

    Article  MathSciNet  Google Scholar 

  26. Jia, B., Xin, M., Cheng, Y.: Sparse gauss-hermite quadrature filter with application to spacecraft attitude estimation. J. Guid. Control Dyn. 34(2), 367–379 (2011)

    Article  Google Scholar 

  27. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182–194. International Society for Optics and Photonics (1997)

  28. Stroud, A.H.: Some fifth degree integration formulas for symmetric regions. Math. Comput. 20(93), 90–97 (1966)

    Article  MathSciNet  Google Scholar 

  29. Stroud, A.H.: Some seventh degree integration formulas for symmetric regions. SIAM J. Numer. Anal. 4(1), 37–44 (1967)

    Article  MathSciNet  Google Scholar 

  30. Jia, B., Xin, M., Cheng, Y.: High-degree cubature Kalman filter. Automatica 49(2), 510–518 (2013)

    Article  MathSciNet  Google Scholar 

  31. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  32. Eldred, M., Webster, C., Constantine, P.: Evaluation of non-intrusive approaches for wiener-askey generalized polynomial chaos. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, p. 1892 (2008)

  33. Jones, B.A., Bryant, D.S., Vo, B.-T., Vo, B.-N.: Challenges of multi-target tracking for space situational awareness. In: 18th International Conference on Information Fusion (FUSION), pp. 1278–1285. IEEE (2015)

  34. Gottlieb, R.G.: Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data. NASA Contractor Report 188243 (1993)

  35. Tapley, B, Ries, J, Bettadpur, S, Chambers, D, Cheng, M, Condi, F, Gunter, B, Kang, P, Nagel, R, et al.: Pastor Ggm02–an improved earth gravity field model from grace. J. Geod. 79(8), 467–478 (2005)

    Article  Google Scholar 

  36. Curtis, H.D: Orbital Mechanics for Engineering Students, pp. 659–660 Butterworth-Heinemann (2013)

  37. Hill Peter, D.: Kernel estimation of a distribution function. Commun. Statist.-Theory Methods 14(3), 605–620 (1985)

    Article  MathSciNet  Google Scholar 

  38. Scheeres, D.J., Hsiao, F.-Y., Park, R.S., Villac, B.F., Maruskin, J.M.: Fundamental limits on spacecraft orbit uncertainty and distribution propagation. J. Astronaut. Sci. 54(3-4), 505–523 (2006)

    Article  Google Scholar 

  39. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  40. Petras, K.: On the smolyak cubature error for analytic functions. Adv. Comput. Math. 12(1), 71–93 (2000)

    Article  MathSciNet  Google Scholar 

  41. Doornbos, E.: Thermospheric Density and Wind Determination from Satellite Dynamics. Springer Science & Business Media (2012)

  42. Moe, K., Moe, M.M., Doornbos, E.: Outstanding issues related to thermospheric measurements and modelling. In: 38th COSPAR Scientific Assembly, vol. 38, p. 4 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamesh Subbarao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhusal, R., Subbarao, K. Generalized Polynomial Chaos Expansion Approach for Uncertainty Quantification in Small Satellite Orbital Debris Problems. J Astronaut Sci 67, 225–253 (2020). https://doi.org/10.1007/s40295-019-00176-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00176-1

Keywords

Navigation