Skip to main content

Advertisement

Log in

Effects of road ditches on the vegetation composition in a saline environment

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

The construction of transportation corridors (such as roads) frequently disturbs and alters the natural disturbance regimes of ecosystems in many areas worldwide. In this study, by comparing the species richness, diversity, composition and soil among four ecotypes (non-road disturbance areas, road systems without ditches, road systems with large and small ditches), we tested the hypothesis that the presence of road ditches could facilitate the preservation of species and increase species richness in the Yellow River Delta, China. Both positive and negative effects of road ditches on the plant community were detected. The species richness in road systems (> 14) was significantly greater than that in the non-road disturbance areas (6). In the road systems without ditches, the refuges (relatively low soil salinity: 1.12 ± 0.15 mg/g) for non-halophytes were limited to road verges (0 m from a road verge). In the road systems that included a ditch, however, the refuge area expanded from road verges to 30 m from the verges. The width and structure affected ditch function. Both large ditches and small ditches effectively reduced the salinity of the soil, but the influence mechanisms differed, resulting in differences in the distribution of species diversity. The proportion of non-halophytes was significantly greater (37%) in the road systems with large ditches than in the road systems with small ditches (45.0%). In addition, the proper structure of large ditches with slopes increased the species diversity (the species richness was 26); in contrast, some structures of small ditches reduced the species diversity (the species richness was 14). The results of our study suggest that large ditches (width > 5 m) can be constructed 10 m from road verges to increase local species richness. Moreover, it is necessary to create buffer zones alongside roads (30 m from road verge), which can prevent the movement of invasive species into internal natural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El-Ghani MM, El-Sawaf NA (2005) The coastal roadside vegetation and environmental gradients in the arid lands of Egypt. Community Ecol 6:143–154

    Google Scholar 

  • Ayram CAC, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr Earth Environ 40:7–37

    Google Scholar 

  • Balmford A, Bond W (2005) Trends in the state of nature and their implications for human well-being. Ecol Lett 8:1218–1234

    PubMed  Google Scholar 

  • Braak CJFT (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Google Scholar 

  • Brudvig LA (2016) Interpreting the effects of landscape connectivity on community diversity. J Veg Sci 27:4–5

    Google Scholar 

  • Damschen EI, Haddad NM, Orrock JL et al (2006) Corridors increase plant species richness at large scales. Science 313:1284–1286

    PubMed  CAS  Google Scholar 

  • Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Brudvig LA, Haddad NM, Levey DJ, Tewksbury JJ (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci 111:3484–3489

    PubMed  CAS  Google Scholar 

  • Favre-Bac L, Ernoult A, Mony C, Rantier Y, Nabucet J, Burel F (2014) Connectivity and propagule sources composition drive ditch plant metacommunity structure. Acta Oecol 61:57–64

    Google Scholar 

  • Flory SL, Clay K (2009) Effects of roads and forest successional age on experimental plant invasions. Biol Conserv 142:2531–2537

    Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA et al (2002) Road ecology: science and solutions. Island Press, Washington

    Google Scholar 

  • Geertsema W, Sprangers J (2002) Plant distribution patterns related to species characteristics and spatial and temporal habitat heterogeneity in a network of ditch banks. Plant Ecol 162:91–108

    Google Scholar 

  • Grootjans AP, Hunneman H, Verkiel H et al (2005) Long-term effects of drainage on species richness of a fen meadow at different spatial scales. Basic Appl Ecol 6:185–193

    Google Scholar 

  • Haddad NM, Hudgens B, Damschen EI, Levey DJ, Orrock JL, Tewksbury JJ, Weldon AJ (2011) Assessing positive and negative ecological effects of corridors. In: Liu J, Hull V, Morzillo AT, Wiens JA (eds) Sources, sinks and sustainability. Cambridge University Press, Cambridge, pp 475–503

    Google Scholar 

  • Hylander K (2006) Riparian zones increase regional species richness by harboring different, not more, species: comment. Ecology 87:2126–2128

    PubMed  Google Scholar 

  • Irl SDH, Steinbauer MJ, Epperlein L et al (2014) The Hitchhiker’s guide to island endemism: biodiversity and endemic perennial plant species in roadside and surrounding vegetation. Biol Conserv 23(9):2273–2287

    Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of India, New Delhi

    Google Scholar 

  • Jodoin Y, Lavoie C, Villeneuve P et al (2008) Highways as corridors and habitats for the invasive common reed Phragmites australis in quebec, canada. J Appl Ecol 45:459–466

    Google Scholar 

  • Johnston FM, Johnston SW (2004) Impacts of road disturbance on soil properties and on exotic plant occurrence in subalpine areas of the australian alps. Arct Antrct Alp Res 36:201–207

    Google Scholar 

  • Liira J, Paal T (2013) Do forest-dwelling plant species disperse along landscape corridors? Plant Ecol 214(3):455–470

    Google Scholar 

  • Lu R (1999) Agricultural chemical analysis method for soil. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Lugo AE, Gucinski H (2000) Function, effects, and management of forest roads. For Ecol Manage 133:249–262

    Google Scholar 

  • Maheu-Giroux M, de Blois S (2007) Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landsc Ecol 22:285–301

    Google Scholar 

  • Meier M, Gerlach R, Schirmel J, Buhk C (2017) Plant diversity in a water-meadow landscape: the role of irrigation ditches. Plant Ecol 218(8):971–981

    Google Scholar 

  • Miller CA, Benscoter BW, Turetsky MR (2015) The effect of long-term drying associated with experimental drainage and road construction on vegetation composition and productivity in boreal fens. Wetlands Ecol Manage 23(5):845–854

    Google Scholar 

  • Monika SK, Katarzyna MZ, Malgorzata M (2016) How do ditches contribute to bryophyte diversity in managed forests in East-Central Europe? Eur J For Res 135(4):621–632

    Google Scholar 

  • Rijsdijk A, Bruijnzeel LAS, Sutoto CK (2007) Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia. Geomorphology 87:28–37

    Google Scholar 

  • Rotholz E, Mandelik Y (2013) Roadside habitats: effects on diversity and composition of plant, arthropod, and small mammal communities. Biodivers Conserv 22:1017–1031

    Google Scholar 

  • Schaminée JHJ, Van Duuren L, De Bakker AJ (1992) Europese en mondiale verspreiding van nederlandse vaatplanten. Gorteria 18:57–96

    Google Scholar 

  • Sheridan GJ, Noske PJ (2007a) Catchment-scale contribution of forest roads to stream exports of sediment, phosphorus and nitrogen. Hydrol Process 21:3107–3122

    CAS  Google Scholar 

  • Sheridan GJ, Noske PJ (2007b) A quantitative study of sediment delivery and stream pollution from different forest road types. Hydrol Process 21:387–398

    Google Scholar 

  • Shi CX, Zhang D (2003) Processes and mechanisms of dynamic channel adjustment to delta progradation: the case of the mouth channel of the yellow river, china. Earth Surf Proc Land 28:609–624

    Google Scholar 

  • Simon TN, Travis J (2011) The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661(1):163–177

    Google Scholar 

  • Skultety D, Matthews JW (2017) Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. Biol Invasion 19(9):2553–2566

    Google Scholar 

  • Smith EP (1984) Nonparametric estimation of species richness. Biometrics 40:119–129

    Google Scholar 

  • Staniaszek-Kik M, Zielińska KM, Misztal M (2016) How do ditches contribute to bryophyte diversity in managed forests in East-Central Europe? Eur J Forest Res 135(4):621–632

    Google Scholar 

  • Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127

    Google Scholar 

  • Tang Q, Liang GF, Lu XL et al (2014) Effects of corridor networks on plant species composition and diversity in an intensive agriculture landscape. Chinese Geogr Sci 24(1):93–103

    Google Scholar 

  • Thiele J, Kellner S, Buchholz S, Schirmel J (2018) Connectivity or area: what drives plant species richness in habitat corridors? Landsc Ecol 33(2):173–181

    Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Google Scholar 

  • Tyser RW, Worley CA (1992) Alien flora in grasslands adjacent to road and trail corridors in Glacier National-Park, Montana (USA). Conserv Biol 6:253–262

    Google Scholar 

  • Uroy L, Ernoult A, Mony C (2019) Effect of landscape connectivity on plant communities: a review of response patterns. Landsc Ecol 34(2):203–225

    Google Scholar 

  • Verkaar D, Van Duuren L, Schaminée JHJ (1992) De internationale betekenis van nederland voor hogere planten op basis van biogeografische gegevens. De Levende Natuur 2:34–39

    Google Scholar 

  • Wang R, Zhou G (2000) Shandong vegetation. Shandong Science and Technology Publishing House, Jinan

    Google Scholar 

  • Westhoff V, Weeda E (1984) De achteruitgang van de nederlandse flora sinds het begin van deze eeuw. Natuur en Milieu 6:8–17

    Google Scholar 

  • Wilcove DS, Mclellan CH, Dobson AP (1986) Habitation fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Assoiciates, Sunderland, pp 237–256

    Google Scholar 

  • Wu J (2007) Lanscape ecology. Higher Education Press, Beijing

    Google Scholar 

  • Xiao DN, Zhao Y (1990) Landscape ecology. Science Press, Beijing

    Google Scholar 

  • Zeng SL, Zhang TT, Gao Y et al (2011) Effects of road age and distance on plant biodiversity: a case study in the yellow river delta of china. Plant Ecol 212(7):1213–1229

    Google Scholar 

  • Zeng SL, Zhang TT, Gao Y et al (2012) Road effects on vegetation composition in a saline environment. J Plant Ecol 5(2):206–218

    Google Scholar 

  • Zhang J, Duan D (2009) Yellow river delta: technique on ecological reclamation of alkaline land and suggestion on the integrated development. Hebei Fish 3:18–20

    CAS  Google Scholar 

  • Zielińska KM, Misztal M, Zielińska A, Żywiec M (2013) Influence of ditches on plant species diversity in the managed forests of Central Poland. Baltic For 19(2):270–279

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant nos. 2006CB403305 and 41505122), the Environmental Protection Science and Technology Projects of Sichuan province (Grant no. 2013HBZX01), the Science and Technology support project (Grant no. 2015GZ0238), introduced talents start project of Chengdu University of Information Technology (No. KYTZ201429), National key research and development plan (2018YFC0214003) and the Soft Science Research Project (2017ZR0043).The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Lan Zeng.

Appendices

Appendix 1: List of roads surveyed in the Yellow River Delta, China

No.

Grade

Pavement material

Width (m)

Construction (year)

Length (m)

1

4

Asphalt

8

1988

3378

2

4

Asphalt

8

1988

3148

3

4

Asphalt

6

1990

5187

4

4

Asphalt

8

1992

10104

5

3

Asphalt

9

1988

3021

Appendix 2: The brief procedures and computational formulas of soil characteristic analysis

Environmental variables

(soil properties)

Measurement procedure

Formula

Salinity (mg/g)

1. Put 10 g air-dried soil into shake flask (100 mL), and add 50 mL distilled water;

2. Plug the shake flasks, and then agitate them on a shaker (150/min–180/min) for 5 min;

3. Separate the leach liquor by centrifugation, and then measure the electric conductivity of the leach liquor by an electric conductivity meter (SevenEasy S30, Mettler Toledo, Switzerland);

Salinity(mg/g) = instrument reading(ppt)*5

Moisture content

1. Weight the wet weight of soil sample (m1);

2. Dry the samples to constant weight at 105 °C;

3. Weight the dry weight of the soil sample (m2);

Moisture content = (m1 – m2)/m2

Bulk density (g/cm3)

1. Weight the wet weight of soil sample (m) in the cutting ring (V = 100 cm3);

2. Measure the soil moisture content of soil sample using the oven drying method.

Bulk density (g/cm3) = m/V/[1 + moisture content(%)]

pH

Measured in situ using an electrode pH meter (HI8424, Hanna, Italy)

 

[NO3-N](mgN/kg)

1. Leach NO3 in soil sample (5 g) by 2 mol/L KCL (50 mL);

2. The leach liquor was measured by Smart Chem 200 (Alliance, France).

Standard curve: y = ax + b R2 = 0.9999

y’ respect for concentration; ‘x’ respect for instrument reading

[NO3–N](mg/kg) = y*0.05/m2

[NH4+-N] (mgN/kg)

1. Leach NH4+ in soil sample (5 g) by 2 mol/L KCL (50 mL);

2. The leach liquor was measured by Smart Chem 200 (Alliance, France).

Standard curve: y = ax + b R2 = 0.9999

y’ respect for concentration; ‘x’ respect for instrument reading

[NH4+–N] (mgN/kg) = y*0.05/m2

Appendix 3: List of plant species surveyed in the YRD, China between 2008 and 2009

 

Species

Life history

Life form

Reproductive mode

Origin

Agaricaceae

     

 Agaricus

Agaricus campestris

    

Ferns

     

 Equisetaceae

     
 

Equisetum pratense Ehrh.

Perennial

Herb

Sexual

 
 

Hippochaete ramosissima (Desf.) Boerner

Perennial

Herb

Vegetative

 

Dicots

     

 Apocynaceae

     
 

Apocynum venetum L.

Annual

Shrub

Sexual

 

 Asclepiadaceae

     
 

Metaplexis japonica (Thunb.) Makino

Perennial

Liane

Sexual/vegetative

 

 Asteraceae

     
 

Artemisia capillaris Thunb.

Perennial

Herb

Sexual

 
 

A. fauriei Nakai

Perennial

Herb

Sexual

 
 

A. rubripes Nakai

Perennial

Herb

Sexual

 
 

Aster subulatus Michx.

Annual

Herb

Sexual

N. America

 

Bidens frondosa L.

Annual

Herb

Sexual

N. America

 

C. canadensis (L.) Cronq.

Annual

Herb

Sexual

N. America

 

Hemistepta lyrata (Bge.) Bge.

Biennial

Herb

Sexual

 
 

Inula japonica Thunb.

Perennial

Herb

Sexual

 
 

Ixeris denticulata (Houtt.) Stebb.

Annual

Herb

Sexual

 
 

Mulgedium tataricum (L.) DC.

Perennial

Herb

Sexual

 
 

Sonchus oleraceus L.

Annual

Herb

Sexual

Europe and Asia

 

Tripolium vulgare Nees

Annual

Herb

Sexual

 
 

Xanthium sibiricum Patrin. ex Widder

Annual

Herb

Sexual

 

 Chenopodiaceae

     
 

Atriplex centralasiatica Iljin

Annual

Herb

Sexual

 
 

Chenopodium album L.

Annual

Herb

Sexual

 
 

C. glaucum L.

Annual

Herb

Sexual

 
 

C. serotinum L.

Annual

Herb

Sexual

Siberia, Japan, Europe

 

Kochia scoparia (L.) Schrad

Annual

Herb

Sexual

Europe and Asia

 

Salsola collina Pall.

Annual

Herb

Sexual

 
 

Suaeda glauca (Bge.) Bge.

Annual

Herb

Sexual

 
 

S. salsa (L.) Pall.

Annual

Herb

Sexual

 

 Convolvulaceae

     
 

Convolvulus arvensis L.

Perennial

Herb

Sexual/

vegetative

Europe

 Euphorbiaceae

     
 

Euphorbia humifusa Willd.

Annual

Herb

Sexual

 

 Fabaceae

     
 

Astragalus scaberrimus Bge.

Perennial

Herb

Sexual

 
 

Glycine soja Sieb. et Zucc.

Annual

Herb

Sexual

 
 

Kummerowia striata (Thunb.) Schindl.

Annual

Herb

Sexual

 
 

Medicago sativa L.

Perennial

Herb

Sexual

Europe, Western Asia

 

Melilotus dentatus (Waldst. et Kit.) Pers.

Annual

Herb

Sexual

 
 

Melilotus officinalis (L.) Desr.

Annual

Herb

Sexual

Europe

 Lamiaceae

     
 

Leonurus japonicus Houtt.

Annual

Herb

Sexual

 

 Moraceae

     
 

Humulus scandens (Lour.) Merr.

Annual

Herb

Sexual

 

 Plantaginaceae

     
 

P. depressa Willd.

Annual

Herb

Sexual

N. America

 Plumbaginaceae

     
 

Limonium sinense (Girard) Kuntze

Perennial

Herb

Sexual

Europe

 Polygonaceae

     
 

Polygonum aviculare L.

Annual

Herb

  

 Portulacaceae

     
 

Portulaca oleracea L.

Annual

Herb

Sexual/vegetative

Brazil

 Rosaceae

     
 

Potentilla supina L.

Annual

Herb

Sexual

 

 Rubiaceae

     
 

Rubia cordifolia L.

Perennial

Liane

Sexual

 

 Rutaceae

     
 

Dictamnus dasycarpus Turcz.

Perennial

Herb

Sexual

 

 Tamaricaceae

     
 

Tamarix chinensis Lour.

Annual

Shrub

Sexual/vegetative

West Mediterranean

Monocots

     

 Cyperaceae

     
 

Carex tristachya Thunb.

Perennial

Herb

Sexual

 

 Poaceae

     
 

Aeluropus sinensis (Debeaux) Tzvel.

Perennial

Herb

Vegetative

 
 

Bromus japonicus Thunb.

Annual

Herb

Sexual

 
 

Calamagrostis epigeios (L.) Roth

Perennial

Herb

Sexual

 
 

Cynodon dactylon (L.) Pers.

Perennial

Herb

Vegetative

 
 

Eleusine indica (L.) Gaertn.

Annual

Herb

Sexual

India

 

Echinochloa crusgalli

Annual

Herb

Sexual

 
 

Eragrostis minor Host

Annual

Herb

Sexual

 
 

Imperata cylindrica (L.) Beauv.

Perennial

Herb

Vegetative

 
 

Phragmites australis (Cav.) Trin. ex Steud.

Perennial

Herb

Sexual/vegetative

 
 

Roegneria kamoji Ohwi

Perennial

Herb

Sexual/vegetative

 
 

Setaria glauca (L.) Beauv.

Annual

Herb

Sexual

 
 

S. viridis (L.) Beauv.

Annual

Herb

Sexual

 
 

Unknown species 1#

    
 

Unknown species 2#

    
 

Unknown species 3#

    
 

Unknown species 4#

    
 

Unknown species 5#

    
 

Unknown species 6#

    
 

Unknown species 7#

    
 

Unknown species 8#

    
 

Unknown species 9#

    
 

Unknown species 10#

    
 

Unknown species 11#

    

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, SL., Zhao, B., Zhang, TT. et al. Effects of road ditches on the vegetation composition in a saline environment. Landscape Ecol Eng 16, 71–85 (2020). https://doi.org/10.1007/s11355-019-00405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-019-00405-7

Keywords

Navigation