Skip to main content
Log in

Pore size control of monodisperse silica particles by dual template sol–gel method

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sub 2-μm monodisperse mesoporous silica spheres (MMSS) were synthesized using a mixed template system in a MeOH/H2O solution. 1-Dodecylamine (DDA) and polymeric type Jeffamine surfactants, including D2000, D4000, and T5000, were employed as templates. These mixed template syntheses realized to gain MMSS materials with good spherical shape and uniform particle size. When the MeOH/H2O (v/v) ratio was controlled between 2.5:1 and 3.0:1, mesoporous silica spheres of 2.10–2.35 μm with excellent dispersibility can be obtained. Depending on the surfactant chain length of Jeffamine, hydrothermal aging pH (4–9), time (12–24 h), and temperature (80–140 °C), MMSS with large-pore sizes (up to 14.3 nm), surface areas (153–791 m2/g), and pore volumes (0.47–1.28 cm3/g) can be synthesized.

Highlight

  • Monodisperse mesoporous silica spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoo WC, Stein A (2011) Solvent effects on morphologies of mesoporous silica spheres prepared by pseudomorphic transformations. Chem Mater 23:1761–1767

    Article  CAS  Google Scholar 

  2. Zukal A, Thommes M, Čejka J (2007) Synthesis of highly ordered MCM-41 silica with spherical particles. Microporous Mesoporous Mater 104:52–58

    Article  CAS  Google Scholar 

  3. Yu J, Zhao L, Cheng B (2006) Preparation of monodispersed microporous SiO2 microspheres with high specific surface area using dodecylamine as a hydrolysis catalyst. J Solid State Chem 179:226–232

    Article  CAS  Google Scholar 

  4. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  5. Shimogaki T, Tokoro H, Tabuchi M, Koike N, Yamashina Y, Takahashi M (2016) Large-scale preparation of morphology-controlled microporous silica particles via gradual injection of reactants with different surfactants. J Sol–Gel Sci Technol 79:440–446

    Article  CAS  Google Scholar 

  6. Sayari A, Hamoudi S, Yang Y (2005) Applications of pore-expanded mesoporous silica. 1. removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17:212–216

    Article  CAS  Google Scholar 

  7. Sun J-H, Coppens M-O (2002) A hydrothermal post-synthesis route for the preparation of high quality MCM-48 silica with a tailored pore size. J Mater Chem 12:3016–3020

    Article  CAS  Google Scholar 

  8. Kaneko T, Nagata F, Kugimiya S, Kato K (2018) Morphological control of mesoporous silica particles by dual template method. Ceram Int 44:20581–20585

    Article  CAS  Google Scholar 

  9. Hsu Y-C, Hsu Y-T, Hsu H-Y, Yang C-M (2007) Facile synthesis of mesoporous silica SBA-15 with additional intra-particle porosities. Chem Mater 19:1120–1126

    Article  CAS  Google Scholar 

  10. Birault A, Molina E, Carcel C, Bartlett J, Marcotte N, Toquer G, Lacroix-Desmazes P, Gerardin C, Chi Man MWong (2019) Synthesis of lamellar mesostructured phenylene-bridged periodic mesoporous organosilicas (PMO) templated by polyion complex (PIC) micelles. J Sol–Gel Sci Technol 89:189–195

    Article  CAS  Google Scholar 

  11. Park I, Pinnavaia TJ (2009) Large-pore mesoporous silica with three-dimensional wormhole framework structures. Microporous Mesoporous Mater 118:239–244

    Article  CAS  Google Scholar 

  12. Park I, Wang Z, Pinnavaia TJ (2005) Assembly of large-pore silica mesophases with wormhole framework structures from α,ω-diamine porogens. Chem Mater 17:383–386

    Article  CAS  Google Scholar 

  13. Hossain K-Z, Sayari A (2008) Synthesis of onion-like mesoporous silica from sodium silicate in the presence of α,ω-diamine surfactant. Microporous Mesoporous Mater 114:387–394

    Article  CAS  Google Scholar 

  14. May A, Pasc A, Stebe MJ, Gutierrez JM, Porras M, Blin JL (2012) Tailored jeffamine molecular tools for ordering mesoporous silica. Langmuir 28:9816–9824

    Article  CAS  Google Scholar 

  15. May-Masnou A, Pasc A, Stébé MJ, Gutiérrez JM, Porras M, Blin JL (2013) Solubilization of decane into gemini surfactant with a modified Jeffamine backbone: design of hierarchical porous silica. Microporous Mesoporous Mater 169:235–241

    Article  CAS  Google Scholar 

  16. Riachy P, Lopez G, Emo M, Stebe MJ, Blin JL, Ameduri B (2017) Investigation of a novel fluorinated surfactant-based system for the design of spherical wormhole-like mesoporous silica. J Colloid Interface Sci 487:310–319

    Article  CAS  Google Scholar 

  17. Chunyan L, Caiyun G, Dongxue Z, Jing W, Jiashuo L, Zhaobin L (2015) Modified jeffamine molecular tools for ordered mesoporous and super-micorporous silica microsphere particles. Chin J Inorg Chem 31:954–960

    Google Scholar 

  18. Du Y, Cheng L, Chen L, He Y, Wu Y, He S, Ke Y (2017) Preparation of sub-2 μm large-pore monodispersed mesoporous silica spheres using mixed templates and application in HPLC. Microporous Mesoporous Mater 265:234–240

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 21375038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiong Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, H., Wu, Y. et al. Pore size control of monodisperse silica particles by dual template sol–gel method. J Sol-Gel Sci Technol 94, 186–194 (2020). https://doi.org/10.1007/s10971-019-05152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05152-7

Keywords

Navigation