Skip to main content
Log in

Comparisons of the queen volatile compounds of instrumentally inseminated versus naturally mated honey bee (Apis mellifera) queens

Comparaison des composants volatils de la reine d’abeilles (Apis mellifera) entre reines inséminées artificiellement et reines accouplées naturellement

Ein Vergleich von Königinnenduftstoffen zwischen instrumentell besamten und natürlich gepaarten Honigbienenköniginnen (Apis mellifera)

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Instrumental insemination is an attractive alternative to natural mating because specific genetic crosses can be made, thus producing colonies with desired traits. However, there are conflicting reports on the quality and acceptance of instrumentally inseminated (II) queens compared to naturally mated (NM) queens. One factor that affects acceptance and retention of queens is the volatile compounds they produce. Our study compared volatile chemicals from virgin and mated honey bee queens that were either NM or II. The volatile compounds from virgin queens differed from those of mated egg-laying queens. Virgin queens produced greater relative amounts of the volatile compounds we detected (including 2-phenylethanol, n-octanal, and n-decanal) with the exception of E-β-ocimene, which was higher in mated laying queens. II and NM queens did not differ in type or relative amounts of volatile compounds. The similarities between II and NM queens indicate that the physiological changes that happen after mating and egg laying occur regardless of the mating method.

Zusammenfassung

Die instrumentelle Besamung von Honigbienenköniginnen ist eine attraktive Alternative zu natürlich gepaarten Königinnen, da auf spezielle Eigenschaften wie erhöhte Varroaresistenz, Pollensammelverhalten und Hygieneverhalten selektiert werden kann. Trotz dieser möglichen Vorteile wird nach wie vor diskutiert, ob das chemische Profil von instrumentell besamten Königinnen (II) sich von dem natürlich gepaarter Königinnen (NM) unterscheidet und dadurch deren Akzeptanz innerhalb des Bienenvolkes beeinflusst. Als erstes Ziel dieser Arbeit sollte untersucht werden, ob sich das chemische Profil (vor allem volatile Bestandteile) von unbegatteten Königinnen ändert, wenn sie sich zu begatteten Königinnen in Eilage entwickelt haben. Darüber hinaus analysierten wir, wie sich die Muster der abgegebenen Duftstoffe zwischen II- und NM-Königinnen unterscheiden. Wir besamten zufällig ausgewählte europäische Königinnen mit 5 μL Samen von ca. 7 Drohnen aus unterschiedlichen Völkern. Danach hielten wir die II-Königinnen in einem weisellosen Bienenvolk mit Bienen, Brutwaben sowie Pollen- und Honigwaben. Das Flugloch der Völker mit II-Königinnen war mit einem Königinnenabsperrgitter verschlossen, so dass kein Hochzeitsflug möglich war. Die NM-Königinnen wurden ebenfalls zufällig ausgewählt und unter ähnlichen Bedingungen gehalten wie die II-Königinnen mit dem Unterschied, dass das Flugloch für Hochzeitsflüge offen war. Die flüchtigen Komponenten von II- und NM-Königinnen wurden über eine SPME-Festphasenextraktion gesammelt und anschließend mit GC-MS-Methoden analysiert. 12 Substanzen konnten in mehr als 50 % der II- und NM-Königinnen in zumindest einem Entwicklungsstadium nachgewiesen werden (Abb. 1). Von diesen 12 Substanzen waren 7 (darunter 2-Phenylethanol, n-Octanal, und n-Decanal) in höheren Konzentrationen bei unbegatteten als bei begatteten Königinnen vorhanden (Tab. I, Abb. 3). Die höhere Abgabe von jungfräulichen Königinnenduftstoffen könnte bei der Initiierung des Königinnenaustausches im Bienenvolk eine Rolle spielen. Im Gegensatz dazu wiesen eierlegende Königinnen höhere Konzentrationen von E-β-Ocimene als jungfräuliche Königinnen auf, was für die weitere Akzeptanz älterer Königinnen wichtig sein könnte. II- und NM-Königinnen zeigten während ihrer Entwicklung von jungfräulichen zu begatteten eierlegenden Königinnen ein ähnliches chemisches Profil (Beispiele für individuelle Profile siehe Abb. 2). II- und NM-Königinnen unterscheiden sich auch nicht hinsichtlich ihrer Annahmerate im Bienenvolk. Diese Ähnlichkeiten lassen vermuten, dass die Veränderungen im Duftstoffbouquet nach der Paarung und Eilage der Königinnen unabhängig von der Art der Besamung sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Becker M.M., Bruckner D., Crewe R. (2000) Behavioural response of drone honeybees, Apis mellifera carnica and Apis mellifera scutellata, to worker-produced pheromone compounds, J. Apic. Res. 39, 149–152.

    CAS  Google Scholar 

  • Brian M.V. (1973) Queen recognition by brood-rearing workers of the ant Myrmica rubra L., Anim. Behav. 21, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Cobey S.W. (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance, Apidologie 38, 390–410.

    Article  Google Scholar 

  • DeGrandi-Hoffman G., Gilley D., Hooper J. (2007) The influence of season and volatile compounds on the acceptance of introduced European honey bee (Apis mellifera L.) queens into European and Africanized colonies, Apidologie 38, 230–237.

    Article  CAS  Google Scholar 

  • Engels W., Rosenkranz P., Adler A., Taghizadeh T., Lübke G., Francke W. (1997) Mandibular gland volatiles and their ontogenetic patterns in queen honey bees, Apis mellifera carnica, J. Insect Physiol. 43, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Gilley D.C., DeGrandi-Hoffman G., Hooper J.E. (2006) Volatile compounds emitted by live European honey bee (Apis mellifera L.) queens, J. Insect Physiol. 52, 520–527.

    Article  PubMed  CAS  Google Scholar 

  • Harbo J.R., Harris J.W. (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 92, 261–265.

    Google Scholar 

  • Hoover S.E.R., Keeling C.I., Winston M.L., Slessor K.N. (2003) The effect of queen pheromones on worker honey bee ovary development, Naturwissenschaften 90, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Jumean Z., Unruh T., Gries R., Gries G. (2005) Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae, Naturwissenschaften 92, 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Katzav-Gozansky T., Boulay R., Soroker V., Hefetz A. (2004) Queen-signal modulation of worker pheromonal composition in honeybees, Proc. R. Soc. London B 271, 2065–2069.

    Article  Google Scholar 

  • Keeling C.I., Slessor K.N., Higo H.A., Winston M.L. (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone, Proc. Natl. Acad. Sci.100, 4486–4491.

    Article  PubMed  CAS  Google Scholar 

  • Laidlaw Jr. H.H. (1979) Contemporary Queen Rearing, Dadant & Sons, Hamilton, IL.

    Google Scholar 

  • Laidlaw Jr. H.H. (1992) Production of queens and package bees, in: Graham J.M. (Ed.), The Hive and the Honey Bee, Dadant and Sons, Hamilton, IL, pp. 989–1042.

    Google Scholar 

  • Mackensen O. (1947) Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees, J. Econ. Entomol. 40, 344–349.

    PubMed  CAS  Google Scholar 

  • Naumann K., Winston M.L., Slessor K.N., Prestwich G.D., Latli B. (1992) Intra-nest transmission of aromatic honeybee queen mandibular gland pheromone components: movement as a unit, Can. Entomol. 124, 917–934.

    Article  Google Scholar 

  • Page R.E. Jr, Fondrk M.K. (1995) The effects of colony-level selection on the social organization of honey bee (Apis mellifera L.) colonies: colonylevel components of pollen hoarding, Behav. Ecol. Sociobiol. 36, 135–144.

    Article  Google Scholar 

  • Pankiw T., Winston M.L., Plettner E., Slessor K.N., Pettis J.S., Taylor O.R. (1996) Mandibular gland components of European and Africanized honey bee (Apis mellifera L.), J. Chem. Ecol. 22, 605–615.

    Article  CAS  Google Scholar 

  • Pankiw T., Roman R., Sagili R.R., Zhu-Satzman K. (2004) Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera), Naturwissenschaften 91, 575–578.

    Article  PubMed  CAS  Google Scholar 

  • Richard F.-J., Tarpy D.R., Grozinger C.M. (2007) Effects of insemination quantity on honey bee queen physiology, PLoS ONE 2(10), e980.

    Article  PubMed  Google Scholar 

  • Rothenbuhler W.C. (1964) Behaviour genetics of nest cleaning in honey bees. I. Responses of four inbred lines to disease-killed brood, Anim. Behav. 12, 578–583.

    Article  Google Scholar 

  • Schneider S.S., DeGrandi-Hoffman G. (2002) The influence of worker behaviour and paternity on the development and emergence of honey bee queens, Insectes Soc. 49, 306–314.

    Article  Google Scholar 

  • Schneider S.S., DeGrandi-Hoffman G. (2003) The influence of paternity on virgin queen success in hybrid colonies of European and African honeybees, Anim. Behav. 65, 883–892.

    Article  Google Scholar 

  • Slessor K.N., Kaminski L., King G.G.S., Borden J.H., Winston M.L. (1988) Semiochemical basis of the retinue response to queen honey bees, Nature 332, 354–356.

    Article  CAS  Google Scholar 

  • Smith R.K., Spivak M., Taylor O.R., Bennett C., Smith M.L. (1993) Maturation of tergal gland alkene profiles in European honey bee queens, Apis mellifera L., J. Chem. Ecol. 19, 133–142.

    Article  Google Scholar 

  • Tarpy D.R., Gilley D.C. (2004) Group decision making during queen production in colonies of highly eusocial bees, Apidologie 35, 207–216.

    Article  Google Scholar 

  • Torto B., Suazo A., Alborn H., Tumlinson J.H., Teal P.E.A. (2005) Responses of the small hive beetle (Aethina tumida) to a blend of chemicals identified from honeybee (Apis mellifera) volatiles, Apidologie 36, 523–532.

    Article  CAS  Google Scholar 

  • Vargo E.L. (1997) Poison gland of queen fire ants (Solenopsis invicta) is the source of a primer pheromone, Naturwissenschaften 84, 507–510.

    Article  CAS  Google Scholar 

  • Vargo E.L. (1999) Reproductive development and ontogeny of queen pheromone production in the fire ant Solenopsis invicta, Physiol. Entomol. 24, 370–376.

    Article  Google Scholar 

  • Vogel A.I., Tatchell A.R., Furnis B.S., Hannaford A.J., Smith P.W.J. (1989) Vogel’s Textbook of Practical Organic Chemistry (5th ed.), John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Wossler T.C., Jones G.E., Allsopp M.H., Hepburn R. (2006) Virgin queen mandibular gland signals of Apis mellifera capensis change with age and affect honeybee worker responses, J. Chem. Ecol. 32, 1043–1056.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hua Huang.

Additional information

Manuscript editor: Peter Rosenkranz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M.H., DeGrandi-Hoffman, G. & LeBlanc, B. Comparisons of the queen volatile compounds of instrumentally inseminated versus naturally mated honey bee (Apis mellifera) queens. Apidologie 40, 464–471 (2009). https://doi.org/10.1051/apido/2009008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009008

Navigation