Skip to main content
Log in

Algorithmic Pirogov–Sinai theory

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice \(\mathbb {Z}^d\) and on the torus \((\mathbb {Z}/n\mathbb {Z})^d\). Our approach is based on combining contour representations from Pirogov–Sinai theory with Barvinok’s approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of \(\mathbb {Z}^d\) with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus \((\mathbb {Z}/n\mathbb {Z})^d\) at sufficiently low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This means \(\frac{|\partial ^{\mathrm{in}}\varLambda _{n}|}{|\varLambda _{n}|}\rightarrow 0\), see [23, Section 3.2.1].

  2. We could consider only vertices x such that \(d_\infty (x, \varLambda ^c)>1\), but it does no harm to include the others.

References

  1. Adams, S., Briceño, R., Marcus, B., Pavlov, R.: Representation and poly-time approximation for pressure of \(\mathbb{Z}^2\) lattice models in the non-uniqueness region. J. Stat. Phys. 162(4), 1031–1067 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Barvinok, A.: Computing the partition function for cliques in a graph. Theory Comput. 11(13), 339–355 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Barvinok, A.: Computing the permanent of (some) complex matrices. Found. Comput. Math. 16(2), 329–342 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Barvinok, A.: Combinatorics and complexity of partition functions. vol. 276, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51829-9

  5. Barvinok, A., Regts, G.: Weighted counting of solutions to sparse systems of equations. Comb. Probab. Comput (2019). https://doi.org/10.1017/S0963548319000105

  6. Barvinok, A., Soberón, P.: Computing the partition function for graph homomorphisms with multiplicities. J. Comb. Theory Ser. A 137, 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A Math. Gen. 13(3), L61 (1980)

    MathSciNet  Google Scholar 

  8. Beyer, T., Hedetniemi, S.M.: Constant time generation of rooted trees. SIAM J. Comput. 9(4), 706–712 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Bezáková, I., Galanis, A., Goldberg, L.A., Štefankovič, D.: Inapproximability of the independent set polynomial in the complex plane. In: Proceedings of the Fiftieth Annual ACM Symposium on Theory of Computing, STOC 2018, pp. 1234–1240. ACM (2018)

  10. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: Proceedings of the Forty-ninth Annual Symposium on Foundations of Computer Science, FOCS 2008, pp. 677–686. IEEE (2008)

  11. Blanca, A., Chen, Y., Galvin, D., Randall, D., Tetali, P.: Phase coexistence for the hard-core model on \(\mathbb{Z}^2\). Comb. Probab. Comput. 28(1), 1–22 (2019)

    MATH  Google Scholar 

  12. Blanca, A., Sinclair, A.: Random-cluster dynamics in \(\mathbb{Z}^2\). Probab. Theory Relat. Fields 168(3–4), 821–847 (2017)

    MATH  Google Scholar 

  13. Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Borgs, C., Chayes, J.T., Dyer, M., Tetali, P.: On the sampling problem for H-colorings on the hypercubic lattice. In: Graphs, Morphisms, and Statistical Physics: DIMACS Workshop Graphs, Morphisms and Statistical Physics, March 19–21, 2001, DIMACS Center, vol. 63, p. 13. American Mathematical Soc. (2004)

  15. Borgs, C., Chayes, J.T., Frieze, A., Kim, J.H., Tetali, P., Vigoda, E., Vu, V.H.: Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics. In: Proceedings of the Fourtieth Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 218–229. IEEE (1999)

  16. Borgs, C., Chayes, J.T., Tetali, P.: Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point. Probab. Theory Relat. Fields 152(3–4), 509–557 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Borgs, C., Imbrie, J.Z.: A unified approach to phase diagrams in field theory and statistical mechanics. Commun. Math. Phys. 123(2), 305–328 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Borgs, C., Kotecký, R., Miracle-Solé, S.: Finite-size scaling for Potts models. J. Stat. Phys. 62(3–4), 529–551 (1991)

    MathSciNet  Google Scholar 

  19. Cai, J.Y., Galanis, A., Goldberg, L.A., Guo, H., Jerrum, M., Štefankovič, D., Vigoda, E.: # BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region. J. Comput. Syst. Sci. 82(5), 690–711 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Dobrushin, R.: Estimates of semi-invariants for the Ising model at low temperatures. Transl. Am. Math. Soc. Ser. 2(177), 59–82 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  24. Galanis, A., Štefankovič, D., Vigoda, E.: Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models. Comb. Probab. Comput. 25(4), 500–559 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Galanis, A., Stefankovic, D., Vigoda, E., Yang, L.: Ferromagnetic Potts model: refined #-BIS-hardness and related results. SIAM J. Comput. 45(6), 2004–2065 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Galvin, D., Kahn, J.: On phase transition in the hard-core model on \(\mathbb{Z}^d\). Combin. Probab. Comput. 13(2), 137–164 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Gamarnik, D., Katz, D.: Sequential cavity method for computing free energy and surface pressure. J. Stat. Phys. 137(2), 205–232 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Gheissari, R., Lubetzky, E.: Mixing times of critical two-dimensional Potts models. Commun. Pure Appl. Math. 71(5), 994–1046 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferromagnetic Potts model. J. ACM 59(5), 25 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Grimmett, G.R.: The Random-Cluster Model, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Guo, H., Jerrum, M.: Random cluster dynamics for the Ising model is rapidly mixing. Ann. Appl. Probab. 28(2), 1292–1313 (2018). https://doi.org/10.1214/17-AAP1335

    Article  MathSciNet  MATH  Google Scholar 

  32. Harvey, N.J., Srivastava, P., Vondrák, J.: Computing the independence polynomial: from the tree threshold down to the roots. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1557–1576. SIAM (2018)

  33. Jauslin, I., Lebowitz, J.L.: High-fugacity expansion and crystalline ordering for non-sliding hard-core lattice particle systems. (2017) arXiv preprint arXiv:1708.01912

  34. Jenssen, M., Keevash, P., Perkins, W.: Algorithms for #BIS-hard problems on expander graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2235–2247 (2019) Full version available at arXiv:1807.04804

  35. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Joyce, G.: On the hard-hexagon model and the theory of modular functions. Phil. Trans. R. Soc. Lond. A 325(1588), 643–702 (1988)

    MathSciNet  MATH  Google Scholar 

  38. Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103(3), 491–498 (1986)

    MathSciNet  MATH  Google Scholar 

  39. Laanait, L., Messager, A., Miracle-Solé, S., Ruiz, J., Shlosman, S.: Interfaces in the Potts model I: Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410 (1952)

    MathSciNet  MATH  Google Scholar 

  41. Liu, J., Lu, P.: FPTAS for #BIS with degree bounds on one side. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC 2015, pp. 549–556. ACM (2015)

  42. Liu, J., Sinclair, A., Srivastava, P.: The Ising partition function: Zeros and deterministic approximation. J. Stat. Phys. 174, 287–315 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math. Soc. 15, 339 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)

    MathSciNet  MATH  Google Scholar 

  45. Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in a bounded degree graph. Algorithmica 81(5), 1844–1858 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput. 46(6), 1893–1919 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Peled, R., Samotij, W.: Odd cutsets and the hard-core model on \(\mathbb{Z}^d\). Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50(3), 975–998 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Peters, H., Regts, G.: On a conjecture of Sokal concerning roots of the independence polynomial. Michigan Math. J. 68(1), 33–55 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25(3), 1185–1192 (1975)

    MathSciNet  Google Scholar 

  50. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems continuation. Theor. Math. Phys. 26(1), 39–49 (1976)

    MathSciNet  Google Scholar 

  51. Randall, D.: Slow mixing of Glauber dynamics via topological obstructions. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 870–879. Society for Industrial and Applied Mathematics (2006)

  52. Randall, D., Wilson, D.: Sampling spin configurations of an ising system. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 959–960. Society for Industrial and Applied Mathematics (1999)

  53. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5–6), 1151–1261 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 82(1), 93–133 (1989)

    MathSciNet  MATH  Google Scholar 

  56. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of the Fifty-first Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 287–296. IEEE (2010)

  57. Sly, A., Sun, N.: Counting in two-spin models on d-regular graphs. Ann. Probab. 42(6), 2383–2416 (2014)

    MathSciNet  MATH  Google Scholar 

  58. Timár, Á.: Boundary-connectivity via graph theory. Proc. Am. Math. Soc. 141(2), 475–480 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Tracy, C.A., Grove, L., Newman, M.: Modular properties of the hard hexagon model. J. Stat. Phys. 48(3–4), 477–502 (1987)

    MathSciNet  MATH  Google Scholar 

  60. Ullrich, M.: Rapid mixing of Swendsen–Wang dynamics in two dimensions. Diss. Math. 502, 1–64 (2014)

    MathSciNet  MATH  Google Scholar 

  61. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 140–149. ACM (2006)

  62. Zahradník, M.: An alternate version of Pirogov–Sinai theory. Commun. Math. Phys. 93(4), 559–581 (1984)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

WP and GR thank Ivona Bezáková, Leslie Goldberg, and Mark Jerrum for organizing the 2017 Dagstuhl seminar on computational counting and Jan Hladkỳ for organizing the 2018 workshop on graph limits in Bohemian Switzerland. Both meetings provided essential inspiration and discussion leading to this work. TH thanks Roman Kotecký for helpful discussions. We thank Eric Vigoda, Matthew Jenssen, and Reza Gheissari for detailed comments on a draft of the paper. We are moreover grateful to the anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler Helmuth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tyler Helmuth: Supported by EPSRC Grant EP/P003656/1.

Will Perkins: Supported in part by EPSRC Grant EP/P009913/1 and NSF Career Award DMS-1847451.

Guus Regts: Supported by an NWO Veni Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helmuth, T., Perkins, W. & Regts, G. Algorithmic Pirogov–Sinai theory. Probab. Theory Relat. Fields 176, 851–895 (2020). https://doi.org/10.1007/s00440-019-00928-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00928-y

Keywords

Mathematics Subject Classification

Navigation