Skip to main content

Advertisement

Log in

Polybrominated diphenyl ethers (PBDEs) in ambient air samples at the electronic waste (e-waste) reclamation site

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in various building materials, plastic and other polymers, airplanes, electronics, etc. All or some of their congeners have been already banned in many countries, due to their persistency and adverse health effects. In this study, we are focusing on e-wastes as a source of emission of PBDEs in ambient air during reclamation processes. The ambient air particulate matter (PM) samples were collected at and near an e-waste reclamation site in Bangkok, Thailand. Results showed the presence of various homologues, viz: tri-, tetra-, penta-, hexa-, and hepta-PBDEs in both PM2.5 and total suspended particle (TSP) samples. The comparison of samples as a function of distance from the reclamation site indicated elevated levels of PBDEs in close proximity to the e-waste site. Interestingly, a shift in the congener pattern was observed with lower brominated PBDEs being more prevalent in nearby off-site samples as compared to the PM collected at the e-waste site. The total penta-PBDEs concentration is almost double in the e-waste site PM2.5 compared to the control site samples. For TSP, tetra, penta, and hepta-PBDEs congeners are at higher concentrations at the e-waste sites and its vicinity compared to reference sites. Overall, a clear trend can be observed indicating a debromination of PBDEs to more toxic tri and tetra congeners during the reclamation process and PBDEs are being translocated from treated materials to ambient air PM. BDE 30 is uniquely detected in our studies as a dominant final debromination product, that can be used as a marker of thermal e-waste activity. This work indicates potential hazards related to the reclamation of e-wastes and remediation of sites containing PBDEs. In particular, thermal treatment methods can lead to congener transformation and increased emissions of more toxic lower brominated congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Darnerud PO, Eriksen GS, Jóhannesson T, Larsen PB, Viluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspectives. 2001;109(Suppl 1):49.

    Article  CAS  Google Scholar 

  2. Keller JM, Alava JJ, Aleksa K, Young B, Kucklick JR. Spatial trends of polybrominated diphenyl ethers (PBDEs) in loggerhead sea turtle eggs and plasma. Organohalogen Compd. 2005;67:610–1.

    Google Scholar 

  3. Babrauskas V, Blum A, Daley R, Birnbaum L. Flame retardants in furniture foam: benefits and risks. Fire Safety Sci. 2011;10:265–78.

    Article  Google Scholar 

  4. UNEP. Stockholm Convention. http://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/tabid/5837/Default.aspx

  5. Olutona GO, Oyekunle JA, Ogunfowokan AO, Fatoki OS. Assessment of polybrominated diphenyl ethers in sediment of Asunle stream of the Obafemi Awolowo university, Ile-Ife, Nigeria. Environ Sci Pollut Res. 2016;23(21):21195–205.

    Article  CAS  Google Scholar 

  6. Daso AP, Fatoki OS, Odendaal JP. Occurrence of polybrominated diphenyl ethers (PBDEs) and 2,2′,4,4′,5,5′-hexabromobiphenyl (BB-153) in water samples from the Diep River, Cape Town, South Africa. Environ Sci Pollut Res. 2013;20(8):5168–76.

    Article  CAS  Google Scholar 

  7. Stapleton HM, Dodder NG, Offenberg JH, Schantz MM, Wise SA. Polybrominated diphenyl ethers in house dust and clothes dryer lint. Environ Sci Technol. 2005;39(4):925–31.

    Article  CAS  Google Scholar 

  8. Hale RC, La Guardia MJ, Harvey EP, Mainor TM, Duff WH, Gaylor MO. Polybrominated diphenyl ether flame retardants in Virginia freshwater fishes (USA). Environ Sci Technol. 2001;35(23):4585–91.

    Article  CAS  Google Scholar 

  9. Sellström U, Kierkegaard A, de Wit C, Jansson B. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river. Environ Toxicol Chem. 1998;17(6):1065–72.

    Article  Google Scholar 

  10. Domingo JL, Bocio A, Falcó G, Llobet JM. Exposure to PBDEs and PCDEs associated with the consumption of edible marine species. Environ Sci Technol. 2006;40(14):4394–9.

    Article  CAS  Google Scholar 

  11. Christensen JH, Glasius M, Pécseli M, Platz J, Pritzl G. Polybrominated diphenyl ethers (PBDEs) in marine fish and blue mussels from southern Greenland. Chemosphere. 2002;47(6):631–8.

    Article  CAS  Google Scholar 

  12. Ohta S, Ishizuka D, Nishimura H, Nakao T, Aozasa O, Shimidzu Y, Ochiai F, Kida T, Nishi M, Miyata H. Comparison of polybrominated diphenyl ethers in fish, vegetables, and meats and levels in human milk of nursing women in Japan. Chemosphere. 2002;46(5):689–96.

    Article  CAS  Google Scholar 

  13. Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20–30 years. Chemosphere. 2000;40(9–11):1111–23.

    Article  Google Scholar 

  14. Meironyté D, Norén K, Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972-1997. J Toxicol Environ Health Part A. 1999;58(6):329–41.

    Article  Google Scholar 

  15. Bi X, Qu W, Sheng G, Zhang W, Mai B, Chen D, Yu L, Fu J. Polybrominated diphenyl ethers in South China maternal and fetal blood and breast milk. Environ Pollut. 2006;144(3):1024–30.

    Article  CAS  Google Scholar 

  16. Fängström B, Hovander L, Bignert A, Athanassiadis I, Linderholm L, Grandjean P, Weihe P, Bergman Å. Concentrations of polybrominated diphenyl ethers, polychlorinated biphenyls, and polychlorobiphenylols in serum from pregnant Faroese women and their children 7 years later. Environ Sci Technol. 2005;39(24):9457–63.

    Article  CAS  Google Scholar 

  17. La Guardia MJ, Hale RC, Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ Sci Technol. 2006;40(20):6247–54.

    Article  CAS  Google Scholar 

  18. EPA. Preliminary information on manufacturing, processing, distribution, use, and disposal: decabromodiphenyl ether. 2017. https://www.epa.gov/sites/production/files/2017-08/documents/decabde_-_use_information_-_8-7-17-clean.pdf

  19. Watanabe I, Sakai S-I. Environmental release and behavior of brominated flame retardants. Environ Int. 2003;29(6):665–82.

    Article  CAS  Google Scholar 

  20. Canadian Environmental Protection Act, 1999. Ecological Screening Assessment Report on Polybrominated Diphenyl Ethers (PBDEs). 2006. https://www.ec.gc.ca/lcpe-cepa/documents/substances/pbde/sar_pbde-eng.pdf

  21. Hooper K, McDonald TA. The PBDEs: an emerging environmental challenge and another reason for breast-milk monitoring programs. Environ Health Perspect. 2000;108(5):387.

    Article  CAS  Google Scholar 

  22. Rahman F, Langford KH, Scrimshaw MD, Lester JN. Polybrominated diphenyl ether (PBDE) flame retardants. Sci Total Environ. 2001;275(1–3):1–17.

    Article  CAS  Google Scholar 

  23. Legler J, Hamers T, van Eck van der Sluijs-van de Bor M, Schoeters G, van der Ven L, Eggesbo M, Koppe J, Feinberg M, Trnovec T. The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr. 2011;94(suppl_6):1933S–8S.

    Article  CAS  Google Scholar 

  24. Ceccatelli R, Faass O, Schlumpf M, Lichtensteiger W. Gene expression and estrogen sensitivity in rat uterus after developmental exposure to the polybrominated diphenyl ether PBDE 99 and PCB. Toxicology. 2006;220(2–3):104–16.

    Article  CAS  Google Scholar 

  25. Hoppe AA, Carey GB. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity. 2007;15(12):2942–50.

    Article  CAS  Google Scholar 

  26. Janesick A, Blumberg B. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res Part C. 2011;93(1):34–50.

    Article  CAS  Google Scholar 

  27. Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors? Environ Int. 2003;29(6):879–85.

    Article  CAS  Google Scholar 

  28. Karlsson M, Ericson I, van Bavel B, Jensen J-K, Dam M. Levels of brominated flame retardants in Northern Fulmar (Fulmarus glacialis) eggs from the Faroe Islands. Sci Total Environ. 2006;367(2–3):840–6.

    Article  CAS  Google Scholar 

  29. EPA, Technical fact —polybrominated diphenyl ethers (PBDEs). 2017. https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_perchlorate_january2014_final_0.pdf

  30. Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Niedzwiecki M, Wang RY. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118(5):712.

    Article  CAS  Google Scholar 

  31. Bradman A, Castorina R, Sjödin A, Fenster L, Jones RS, Harley KG, Chevrier J, Holland NT, Eskenazi B. Factors associated with serum polybrominated diphenyl ether (PBDE) levels among school-age children in the CHAMACOS cohort. Environ Sci Technol. 2012;46(13):7373–81.

    Article  CAS  Google Scholar 

  32. Chao H-R, Shy C-G, Huang H-L, Koh T-W, Tok T-S, Chen SC-C, Chiang B-A, Kuo Y-M, Chen K-C, Chang-Chien G-P. Particle-size dust concentrations of polybrominated diphenyl ethers (PBDEs) in southern Taiwanese houses and assessment of the PBDE daily intakes in toddlers and adults. Aerosol Air Qual. Res. 2014;14:1299–309.

    Article  CAS  Google Scholar 

  33. Chen S-J, Ma Y-J, Wang J, Chen D, Luo X-J, Mai B-X. Brominated flame retardants in children’s toys: concentration, composition, and children’s exposure and risk assessment. Environ Sci Technol. 2009;43(11):4200–6.

    Article  CAS  Google Scholar 

  34. Strandberg B, Dodder NG, Basu I, Hites RA. Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environ Sci Technol. 2001;35(6):1078–83.

    Article  CAS  Google Scholar 

  35. Keum Y-S, Li QX. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ Sci Technol. 2005;39(7):2280–6.

    Article  CAS  Google Scholar 

  36. Alaee M, Arias P, Sjödin A, Bergman Å. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int. 2003;29(6):683–9.

    Article  CAS  Google Scholar 

  37. Chain EPOCITF. Scientific opinion on polybrominated diphenyl ethers (PBDEs) in food. Efsa J. 2011;9(5):2156.

    Article  CAS  Google Scholar 

  38. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112(1):9–17.

    Article  CAS  Google Scholar 

  39. Wei WJ, Mandin C, Blanchard O, Mercier F, Pelletier M, Le Bot B, Glorennec P, Ramalho O. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment. Chemosphere. 2016;153:212–9.

    Article  CAS  Google Scholar 

  40. Prevedouros K, Jones KC, Sweetman AJ. Estimation of the production, consumption, and atmospheric emissions of pentabrominated diphenyl ether in Europe between 1970 and 2000. Environ Sci Technol. 2004;38(12):3224–31.

    Article  CAS  Google Scholar 

  41. Rauert C, Harrad S. Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways—a test chamber investigation. Sci Total Environ. 2015;536:568–74.

    Article  CAS  Google Scholar 

  42. Lewis T, World’s E-waste to grow 33% by 2017, says global report. 2013. https://www.livescience.com/41967-world-e-waste-to-grow-33-percent-2017.html

  43. Li J, Liu L, Zhao N, Yu K, Zheng L. Regional or global WEEE recycling. Where to go? Waste Manage. 2013;33(4):923–34.

    Article  Google Scholar 

  44. Muenhor D, Moon HB, Lee S, Goosey E. Polybrominated diphenyl ethers (PBDEs) in floor and road dust from a manual e-waste dismantling facility and adjacent communities in Thailand. J Environ Sci Heal A. 2017;52(14):1284–94.

    Article  CAS  Google Scholar 

  45. Qu WY, Bi XH, Sheng GY, Lu SY, Fu H, Yuan J, Li LP. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environ Int. 2007;33(8):1029–34.

    Article  CAS  Google Scholar 

  46. Redfern FM, Lee W-J, Yan P, Mwangi JK, Wang L-C, Shih C-H. Overview and perspectives on emissions of polybrominated diphenyl ethers on a global basis: evaporative and fugitive releases from commercial PBDE mixtures and emissions from combustion sources. Aerosol Air Qual Res. 2017;17(5):1117–31.

    Article  CAS  Google Scholar 

  47. Cahill TM, Groskova D, Charles MJ, Sanborn JR, Denison MS, Baker L. Atmospheric concentrations of polybrominated diphenyl ethers at near-source sites. Environ Sci Technol. 2007;41(18):6370–7.

    Article  CAS  Google Scholar 

  48. Liebmann, A., ICT Waste handling: regional and global end-of-life treatment scenarios for ICT equipment. 2015.

  49. Deng W, Zheng J, Bi X, Fu J, Wong M. Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ Int. 2007;33(8):1063–9.

    Article  CAS  Google Scholar 

  50. Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environ Sci Technol. 2004;38(1):34–41.

    Article  CAS  Google Scholar 

  51. Bennett D, Moran R, Wu XM, Tulve N, Clifton M, Colón M, Weathers W, Sjödin A, Jones R, Hertz-Picciotto I. Polybrominated diphenyl ether (PBDE) concentrations and resulting exposure in homes in California: relationships among passive air, surface wipe and dust concentrations, and temporal variability. Indoor Air. 2015;25(2):220–9.

    Article  CAS  Google Scholar 

  52. Zhang M, Buekens A, Li X. Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J Hazard Mater. 2016;304:26–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Environmental Health Sciences Superfund Research Program, Grant number P42ES013648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir M. Lomnicki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimire, A., dela Cruz, A.L.N., Wong, R. et al. Polybrominated diphenyl ethers (PBDEs) in ambient air samples at the electronic waste (e-waste) reclamation site. Waste Dispos. Sustain. Energy 1, 79–89 (2019). https://doi.org/10.1007/s42768-019-00002-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-019-00002-2

Keywords

Navigation